Skip to main content
Solve for x, y
Tick mark Image
Graph

Similar Problems from Web Search

Share

3\left(x-1\right)-2\left(y-2\right)=0,x+3y=-4
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
3\left(x-1\right)-2\left(y-2\right)=0
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
3x-3-2\left(y-2\right)=0
Multiply 3 times x-1.
3x-3-2y+4=0
Multiply -2 times y-2.
3x-2y+1=0
Add -3 to 4.
3x-2y=-1
Subtract 1 from both sides of the equation.
3x=2y-1
Add 2y to both sides of the equation.
x=\frac{1}{3}\left(2y-1\right)
Divide both sides by 3.
x=\frac{2}{3}y-\frac{1}{3}
Multiply \frac{1}{3} times 2y-1.
\frac{2}{3}y-\frac{1}{3}+3y=-4
Substitute \frac{2y-1}{3} for x in the other equation, x+3y=-4.
\frac{11}{3}y-\frac{1}{3}=-4
Add \frac{2y}{3} to 3y.
\frac{11}{3}y=-\frac{11}{3}
Add \frac{1}{3} to both sides of the equation.
y=-1
Divide both sides of the equation by \frac{11}{3}, which is the same as multiplying both sides by the reciprocal of the fraction.
x=\frac{2}{3}\left(-1\right)-\frac{1}{3}
Substitute -1 for y in x=\frac{2}{3}y-\frac{1}{3}. Because the resulting equation contains only one variable, you can solve for x directly.
x=\frac{-2-1}{3}
Multiply \frac{2}{3} times -1.
x=-1
Add -\frac{1}{3} to -\frac{2}{3} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=-1,y=-1
The system is now solved.
3\left(x-1\right)-2\left(y-2\right)=0,x+3y=-4
Put the equations in standard form and then use matrices to solve the system of equations.
3\left(x-1\right)-2\left(y-2\right)=0
Simplify the first equation to put it in standard form.
3x-3-2\left(y-2\right)=0
Multiply 3 times x-1.
3x-3-2y+4=0
Multiply -2 times y-2.
3x-2y+1=0
Add -3 to 4.
3x-2y=-1
Subtract 1 from both sides of the equation.
\left(\begin{matrix}3&-2\\1&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-1\\-4\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}3&-2\\1&3\end{matrix}\right))\left(\begin{matrix}3&-2\\1&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-2\\1&3\end{matrix}\right))\left(\begin{matrix}-1\\-4\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}3&-2\\1&3\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-2\\1&3\end{matrix}\right))\left(\begin{matrix}-1\\-4\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-2\\1&3\end{matrix}\right))\left(\begin{matrix}-1\\-4\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{3\times 3-\left(-2\right)}&-\frac{-2}{3\times 3-\left(-2\right)}\\-\frac{1}{3\times 3-\left(-2\right)}&\frac{3}{3\times 3-\left(-2\right)}\end{matrix}\right)\left(\begin{matrix}-1\\-4\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{11}&\frac{2}{11}\\-\frac{1}{11}&\frac{3}{11}\end{matrix}\right)\left(\begin{matrix}-1\\-4\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{11}\left(-1\right)+\frac{2}{11}\left(-4\right)\\-\frac{1}{11}\left(-1\right)+\frac{3}{11}\left(-4\right)\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-1\\-1\end{matrix}\right)
Do the arithmetic.
x=-1,y=-1
Extract the matrix elements x and y.