Solve for x, y
x = \frac{25}{3} = 8\frac{1}{3} \approx 8.333333333
y=17
Graph
Share
Copied to clipboard
3x-3=y+5\times 1
Consider the first equation. Use the distributive property to multiply 3 by x-1.
3x-3=y+5
Multiply 5 and 1 to get 5.
3x-3-y=5
Subtract y from both sides.
3x-y=5+3
Add 3 to both sides.
3x-y=8
Add 5 and 3 to get 8.
5y-5=3\left(x+5\right)\times 2
Consider the second equation. Use the distributive property to multiply 5 by y-1.
5y-5=6\left(x+5\right)
Multiply 3 and 2 to get 6.
5y-5=6x+30
Use the distributive property to multiply 6 by x+5.
5y-5-6x=30
Subtract 6x from both sides.
5y-6x=30+5
Add 5 to both sides.
5y-6x=35
Add 30 and 5 to get 35.
3x-y=8,-6x+5y=35
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
3x-y=8
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
3x=y+8
Add y to both sides of the equation.
x=\frac{1}{3}\left(y+8\right)
Divide both sides by 3.
x=\frac{1}{3}y+\frac{8}{3}
Multiply \frac{1}{3} times y+8.
-6\left(\frac{1}{3}y+\frac{8}{3}\right)+5y=35
Substitute \frac{8+y}{3} for x in the other equation, -6x+5y=35.
-2y-16+5y=35
Multiply -6 times \frac{8+y}{3}.
3y-16=35
Add -2y to 5y.
3y=51
Add 16 to both sides of the equation.
y=17
Divide both sides by 3.
x=\frac{1}{3}\times 17+\frac{8}{3}
Substitute 17 for y in x=\frac{1}{3}y+\frac{8}{3}. Because the resulting equation contains only one variable, you can solve for x directly.
x=\frac{17+8}{3}
Multiply \frac{1}{3} times 17.
x=\frac{25}{3}
Add \frac{8}{3} to \frac{17}{3} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=\frac{25}{3},y=17
The system is now solved.
3x-3=y+5\times 1
Consider the first equation. Use the distributive property to multiply 3 by x-1.
3x-3=y+5
Multiply 5 and 1 to get 5.
3x-3-y=5
Subtract y from both sides.
3x-y=5+3
Add 3 to both sides.
3x-y=8
Add 5 and 3 to get 8.
5y-5=3\left(x+5\right)\times 2
Consider the second equation. Use the distributive property to multiply 5 by y-1.
5y-5=6\left(x+5\right)
Multiply 3 and 2 to get 6.
5y-5=6x+30
Use the distributive property to multiply 6 by x+5.
5y-5-6x=30
Subtract 6x from both sides.
5y-6x=30+5
Add 5 to both sides.
5y-6x=35
Add 30 and 5 to get 35.
3x-y=8,-6x+5y=35
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}3&-1\\-6&5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}8\\35\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}3&-1\\-6&5\end{matrix}\right))\left(\begin{matrix}3&-1\\-6&5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-1\\-6&5\end{matrix}\right))\left(\begin{matrix}8\\35\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}3&-1\\-6&5\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-1\\-6&5\end{matrix}\right))\left(\begin{matrix}8\\35\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-1\\-6&5\end{matrix}\right))\left(\begin{matrix}8\\35\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{3\times 5-\left(-\left(-6\right)\right)}&-\frac{-1}{3\times 5-\left(-\left(-6\right)\right)}\\-\frac{-6}{3\times 5-\left(-\left(-6\right)\right)}&\frac{3}{3\times 5-\left(-\left(-6\right)\right)}\end{matrix}\right)\left(\begin{matrix}8\\35\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{9}&\frac{1}{9}\\\frac{2}{3}&\frac{1}{3}\end{matrix}\right)\left(\begin{matrix}8\\35\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{9}\times 8+\frac{1}{9}\times 35\\\frac{2}{3}\times 8+\frac{1}{3}\times 35\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{25}{3}\\17\end{matrix}\right)
Do the arithmetic.
x=\frac{25}{3},y=17
Extract the matrix elements x and y.
3x-3=y+5\times 1
Consider the first equation. Use the distributive property to multiply 3 by x-1.
3x-3=y+5
Multiply 5 and 1 to get 5.
3x-3-y=5
Subtract y from both sides.
3x-y=5+3
Add 3 to both sides.
3x-y=8
Add 5 and 3 to get 8.
5y-5=3\left(x+5\right)\times 2
Consider the second equation. Use the distributive property to multiply 5 by y-1.
5y-5=6\left(x+5\right)
Multiply 3 and 2 to get 6.
5y-5=6x+30
Use the distributive property to multiply 6 by x+5.
5y-5-6x=30
Subtract 6x from both sides.
5y-6x=30+5
Add 5 to both sides.
5y-6x=35
Add 30 and 5 to get 35.
3x-y=8,-6x+5y=35
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
-6\times 3x-6\left(-1\right)y=-6\times 8,3\left(-6\right)x+3\times 5y=3\times 35
To make 3x and -6x equal, multiply all terms on each side of the first equation by -6 and all terms on each side of the second by 3.
-18x+6y=-48,-18x+15y=105
Simplify.
-18x+18x+6y-15y=-48-105
Subtract -18x+15y=105 from -18x+6y=-48 by subtracting like terms on each side of the equal sign.
6y-15y=-48-105
Add -18x to 18x. Terms -18x and 18x cancel out, leaving an equation with only one variable that can be solved.
-9y=-48-105
Add 6y to -15y.
-9y=-153
Add -48 to -105.
y=17
Divide both sides by -9.
-6x+5\times 17=35
Substitute 17 for y in -6x+5y=35. Because the resulting equation contains only one variable, you can solve for x directly.
-6x+85=35
Multiply 5 times 17.
-6x=-50
Subtract 85 from both sides of the equation.
x=\frac{25}{3}
Divide both sides by -6.
x=\frac{25}{3},y=17
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}