Skip to main content
Solve for x, y
Tick mark Image
Graph

Similar Problems from Web Search

Share

3\left(x+2\right)-y=17,7x+3\left(y-1\right)=12
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
3\left(x+2\right)-y=17
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
3x+6-y=17
Multiply 3 times x+2.
3x-y=11
Subtract 6 from both sides of the equation.
3x=y+11
Add y to both sides of the equation.
x=\frac{1}{3}\left(y+11\right)
Divide both sides by 3.
x=\frac{1}{3}y+\frac{11}{3}
Multiply \frac{1}{3} times y+11.
7\left(\frac{1}{3}y+\frac{11}{3}\right)+3\left(y-1\right)=12
Substitute \frac{11+y}{3} for x in the other equation, 7x+3\left(y-1\right)=12.
\frac{7}{3}y+\frac{77}{3}+3\left(y-1\right)=12
Multiply 7 times \frac{11+y}{3}.
\frac{7}{3}y+\frac{77}{3}+3y-3=12
Multiply 3 times y-1.
\frac{16}{3}y+\frac{77}{3}-3=12
Add \frac{7y}{3} to 3y.
\frac{16}{3}y+\frac{68}{3}=12
Add \frac{77}{3} to -3.
\frac{16}{3}y=-\frac{32}{3}
Subtract \frac{68}{3} from both sides of the equation.
y=-2
Divide both sides of the equation by \frac{16}{3}, which is the same as multiplying both sides by the reciprocal of the fraction.
x=\frac{1}{3}\left(-2\right)+\frac{11}{3}
Substitute -2 for y in x=\frac{1}{3}y+\frac{11}{3}. Because the resulting equation contains only one variable, you can solve for x directly.
x=\frac{-2+11}{3}
Multiply \frac{1}{3} times -2.
x=3
Add \frac{11}{3} to -\frac{2}{3} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=3,y=-2
The system is now solved.
3\left(x+2\right)-y=17,7x+3\left(y-1\right)=12
Put the equations in standard form and then use matrices to solve the system of equations.
3\left(x+2\right)-y=17
Simplify the first equation to put it in standard form.
3x+6-y=17
Multiply 3 times x+2.
3x-y=11
Subtract 6 from both sides of the equation.
7x+3\left(y-1\right)=12
Simplify the second equation to put it in standard form.
7x+3y-3=12
Multiply 3 times y-1.
7x+3y=15
Add 3 to both sides of the equation.
\left(\begin{matrix}3&-1\\7&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}11\\15\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}3&-1\\7&3\end{matrix}\right))\left(\begin{matrix}3&-1\\7&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-1\\7&3\end{matrix}\right))\left(\begin{matrix}11\\15\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}3&-1\\7&3\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-1\\7&3\end{matrix}\right))\left(\begin{matrix}11\\15\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-1\\7&3\end{matrix}\right))\left(\begin{matrix}11\\15\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{3\times 3-\left(-7\right)}&-\frac{-1}{3\times 3-\left(-7\right)}\\-\frac{7}{3\times 3-\left(-7\right)}&\frac{3}{3\times 3-\left(-7\right)}\end{matrix}\right)\left(\begin{matrix}11\\15\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{16}&\frac{1}{16}\\-\frac{7}{16}&\frac{3}{16}\end{matrix}\right)\left(\begin{matrix}11\\15\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{16}\times 11+\frac{1}{16}\times 15\\-\frac{7}{16}\times 11+\frac{3}{16}\times 15\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\\-2\end{matrix}\right)
Do the arithmetic.
x=3,y=-2
Extract the matrix elements x and y.