Solve for p, x
x=-2
p = \frac{10}{9} = 1\frac{1}{9} \approx 1.111111111
Share
Copied to clipboard
6p-3=5-\left(3p-2\right)
Consider the first equation. Use the distributive property to multiply 3 by 2p-1.
6p-3=5-3p+2
To find the opposite of 3p-2, find the opposite of each term.
6p-3=7-3p
Add 5 and 2 to get 7.
6p-3+3p=7
Add 3p to both sides.
9p-3=7
Combine 6p and 3p to get 9p.
9p=7+3
Add 3 to both sides.
9p=10
Add 7 and 3 to get 10.
p=\frac{10}{9}
Divide both sides by 9.
1.8-0.3x=0.4\left(x+8\right)
Consider the second equation. Use the distributive property to multiply 0.3 by 6-x.
1.8-0.3x=0.4x+3.2
Use the distributive property to multiply 0.4 by x+8.
1.8-0.3x-0.4x=3.2
Subtract 0.4x from both sides.
1.8-0.7x=3.2
Combine -0.3x and -0.4x to get -0.7x.
-0.7x=3.2-1.8
Subtract 1.8 from both sides.
-0.7x=1.4
Subtract 1.8 from 3.2 to get 1.4.
x=\frac{1.4}{-0.7}
Divide both sides by -0.7.
x=\frac{14}{-7}
Expand \frac{1.4}{-0.7} by multiplying both numerator and the denominator by 10.
x=-2
Divide 14 by -7 to get -2.
p=\frac{10}{9} x=-2
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}