Evaluate
\frac{3}{8}=0.375
Factor
\frac{3}{2 ^ {3}} = 0.375
Share
Copied to clipboard
\frac{36+5}{12}-\left(-\frac{1\times 3+1}{3}\right)-\frac{4\times 8+3}{8}
Multiply 3 and 12 to get 36.
\frac{41}{12}-\left(-\frac{1\times 3+1}{3}\right)-\frac{4\times 8+3}{8}
Add 36 and 5 to get 41.
\frac{41}{12}-\left(-\frac{3+1}{3}\right)-\frac{4\times 8+3}{8}
Multiply 1 and 3 to get 3.
\frac{41}{12}-\left(-\frac{4}{3}\right)-\frac{4\times 8+3}{8}
Add 3 and 1 to get 4.
\frac{41}{12}+\frac{4}{3}-\frac{4\times 8+3}{8}
The opposite of -\frac{4}{3} is \frac{4}{3}.
\frac{41}{12}+\frac{16}{12}-\frac{4\times 8+3}{8}
Least common multiple of 12 and 3 is 12. Convert \frac{41}{12} and \frac{4}{3} to fractions with denominator 12.
\frac{41+16}{12}-\frac{4\times 8+3}{8}
Since \frac{41}{12} and \frac{16}{12} have the same denominator, add them by adding their numerators.
\frac{57}{12}-\frac{4\times 8+3}{8}
Add 41 and 16 to get 57.
\frac{19}{4}-\frac{4\times 8+3}{8}
Reduce the fraction \frac{57}{12} to lowest terms by extracting and canceling out 3.
\frac{19}{4}-\frac{32+3}{8}
Multiply 4 and 8 to get 32.
\frac{19}{4}-\frac{35}{8}
Add 32 and 3 to get 35.
\frac{38}{8}-\frac{35}{8}
Least common multiple of 4 and 8 is 8. Convert \frac{19}{4} and \frac{35}{8} to fractions with denominator 8.
\frac{38-35}{8}
Since \frac{38}{8} and \frac{35}{8} have the same denominator, subtract them by subtracting their numerators.
\frac{3}{8}
Subtract 35 from 38 to get 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}