Skip to main content
Solve for x, y
Tick mark Image
Graph

Similar Problems from Web Search

Share

29x+92y=1924,29x+30y=1924
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
29x+92y=1924
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
29x=-92y+1924
Subtract 92y from both sides of the equation.
x=\frac{1}{29}\left(-92y+1924\right)
Divide both sides by 29.
x=-\frac{92}{29}y+\frac{1924}{29}
Multiply \frac{1}{29} times -92y+1924.
29\left(-\frac{92}{29}y+\frac{1924}{29}\right)+30y=1924
Substitute \frac{-92y+1924}{29} for x in the other equation, 29x+30y=1924.
-92y+1924+30y=1924
Multiply 29 times \frac{-92y+1924}{29}.
-62y+1924=1924
Add -92y to 30y.
-62y=0
Subtract 1924 from both sides of the equation.
y=0
Divide both sides by -62.
x=\frac{1924}{29}
Substitute 0 for y in x=-\frac{92}{29}y+\frac{1924}{29}. Because the resulting equation contains only one variable, you can solve for x directly.
x=\frac{1924}{29},y=0
The system is now solved.
29x+92y=1924,29x+30y=1924
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}29&92\\29&30\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1924\\1924\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}29&92\\29&30\end{matrix}\right))\left(\begin{matrix}29&92\\29&30\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}29&92\\29&30\end{matrix}\right))\left(\begin{matrix}1924\\1924\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}29&92\\29&30\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}29&92\\29&30\end{matrix}\right))\left(\begin{matrix}1924\\1924\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}29&92\\29&30\end{matrix}\right))\left(\begin{matrix}1924\\1924\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{30}{29\times 30-92\times 29}&-\frac{92}{29\times 30-92\times 29}\\-\frac{29}{29\times 30-92\times 29}&\frac{29}{29\times 30-92\times 29}\end{matrix}\right)\left(\begin{matrix}1924\\1924\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{15}{899}&\frac{46}{899}\\\frac{1}{62}&-\frac{1}{62}\end{matrix}\right)\left(\begin{matrix}1924\\1924\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{15}{899}\times 1924+\frac{46}{899}\times 1924\\\frac{1}{62}\times 1924-\frac{1}{62}\times 1924\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1924}{29}\\0\end{matrix}\right)
Do the arithmetic.
x=\frac{1924}{29},y=0
Extract the matrix elements x and y.
29x+92y=1924,29x+30y=1924
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
29x-29x+92y-30y=1924-1924
Subtract 29x+30y=1924 from 29x+92y=1924 by subtracting like terms on each side of the equal sign.
92y-30y=1924-1924
Add 29x to -29x. Terms 29x and -29x cancel out, leaving an equation with only one variable that can be solved.
62y=1924-1924
Add 92y to -30y.
62y=0
Add 1924 to -1924.
y=0
Divide both sides by 62.
29x=1924
Substitute 0 for y in 29x+30y=1924. Because the resulting equation contains only one variable, you can solve for x directly.
x=\frac{1924}{29}
Divide both sides by 29.
x=\frac{1924}{29},y=0
The system is now solved.