\left. \begin{array} { l } { 29 ( \frac { 7 } { 30 } ) } \\ { ( \frac { 3 } { 4 } ) ( \frac { 2 } { 3 } ) ( \frac { 5 } { 7 } ) } \\ { 9 ( \frac { 7 } { 5 } ) ( \frac { 3 } { 2 } ) } \\ { 5 - 2 ( \frac { 5 } { 3 } ) } \\ { 0 - 3 ( \frac { 2 } { 15 } ) } \end{array} \right.
Sort
-\frac{2}{5},\frac{5}{14},\frac{5}{3},\frac{203}{30},\frac{189}{10}
Evaluate
\frac{203}{30},\ \frac{5}{14},\ \frac{189}{10},\ \frac{5}{3},\ -\frac{2}{5}
Share
Copied to clipboard
sort(\frac{29\times 7}{30},\frac{3}{4}\times \frac{2}{3}\times \frac{5}{7},9\times \frac{7}{5}\times \frac{3}{2},5-2\times \frac{5}{3},0-3\times \frac{2}{15})
Express 29\times \frac{7}{30} as a single fraction.
sort(\frac{203}{30},\frac{3}{4}\times \frac{2}{3}\times \frac{5}{7},9\times \frac{7}{5}\times \frac{3}{2},5-2\times \frac{5}{3},0-3\times \frac{2}{15})
Multiply 29 and 7 to get 203.
sort(\frac{203}{30},\frac{3\times 2}{4\times 3}\times \frac{5}{7},9\times \frac{7}{5}\times \frac{3}{2},5-2\times \frac{5}{3},0-3\times \frac{2}{15})
Multiply \frac{3}{4} times \frac{2}{3} by multiplying numerator times numerator and denominator times denominator.
sort(\frac{203}{30},\frac{2}{4}\times \frac{5}{7},9\times \frac{7}{5}\times \frac{3}{2},5-2\times \frac{5}{3},0-3\times \frac{2}{15})
Cancel out 3 in both numerator and denominator.
sort(\frac{203}{30},\frac{1}{2}\times \frac{5}{7},9\times \frac{7}{5}\times \frac{3}{2},5-2\times \frac{5}{3},0-3\times \frac{2}{15})
Reduce the fraction \frac{2}{4} to lowest terms by extracting and canceling out 2.
sort(\frac{203}{30},\frac{1\times 5}{2\times 7},9\times \frac{7}{5}\times \frac{3}{2},5-2\times \frac{5}{3},0-3\times \frac{2}{15})
Multiply \frac{1}{2} times \frac{5}{7} by multiplying numerator times numerator and denominator times denominator.
sort(\frac{203}{30},\frac{5}{14},9\times \frac{7}{5}\times \frac{3}{2},5-2\times \frac{5}{3},0-3\times \frac{2}{15})
Do the multiplications in the fraction \frac{1\times 5}{2\times 7}.
sort(\frac{203}{30},\frac{5}{14},\frac{9\times 7}{5}\times \frac{3}{2},5-2\times \frac{5}{3},0-3\times \frac{2}{15})
Express 9\times \frac{7}{5} as a single fraction.
sort(\frac{203}{30},\frac{5}{14},\frac{63}{5}\times \frac{3}{2},5-2\times \frac{5}{3},0-3\times \frac{2}{15})
Multiply 9 and 7 to get 63.
sort(\frac{203}{30},\frac{5}{14},\frac{63\times 3}{5\times 2},5-2\times \frac{5}{3},0-3\times \frac{2}{15})
Multiply \frac{63}{5} times \frac{3}{2} by multiplying numerator times numerator and denominator times denominator.
sort(\frac{203}{30},\frac{5}{14},\frac{189}{10},5-2\times \frac{5}{3},0-3\times \frac{2}{15})
Do the multiplications in the fraction \frac{63\times 3}{5\times 2}.
sort(\frac{203}{30},\frac{5}{14},\frac{189}{10},5-\frac{2\times 5}{3},0-3\times \frac{2}{15})
Express 2\times \frac{5}{3} as a single fraction.
sort(\frac{203}{30},\frac{5}{14},\frac{189}{10},5-\frac{10}{3},0-3\times \frac{2}{15})
Multiply 2 and 5 to get 10.
sort(\frac{203}{30},\frac{5}{14},\frac{189}{10},\frac{15}{3}-\frac{10}{3},0-3\times \frac{2}{15})
Convert 5 to fraction \frac{15}{3}.
sort(\frac{203}{30},\frac{5}{14},\frac{189}{10},\frac{15-10}{3},0-3\times \frac{2}{15})
Since \frac{15}{3} and \frac{10}{3} have the same denominator, subtract them by subtracting their numerators.
sort(\frac{203}{30},\frac{5}{14},\frac{189}{10},\frac{5}{3},0-3\times \frac{2}{15})
Subtract 10 from 15 to get 5.
sort(\frac{203}{30},\frac{5}{14},\frac{189}{10},\frac{5}{3},0-\frac{3\times 2}{15})
Express 3\times \frac{2}{15} as a single fraction.
sort(\frac{203}{30},\frac{5}{14},\frac{189}{10},\frac{5}{3},0-\frac{6}{15})
Multiply 3 and 2 to get 6.
sort(\frac{203}{30},\frac{5}{14},\frac{189}{10},\frac{5}{3},0-\frac{2}{5})
Reduce the fraction \frac{6}{15} to lowest terms by extracting and canceling out 3.
sort(\frac{203}{30},\frac{5}{14},\frac{189}{10},\frac{5}{3},-\frac{2}{5})
Subtract \frac{2}{5} from 0 to get -\frac{2}{5}.
\frac{1421}{210},\frac{75}{210},\frac{3969}{210},\frac{350}{210},-\frac{84}{210}
Least common denominator of the numbers in the list \frac{203}{30},\frac{5}{14},\frac{189}{10},\frac{5}{3},-\frac{2}{5} is 210. Convert numbers in the list to fractions with denominator 210.
\frac{1421}{210}
To sort the list, start from a single element \frac{1421}{210}.
\frac{75}{210},\frac{1421}{210}
Insert \frac{75}{210} to the appropriate location in the new list.
\frac{75}{210},\frac{1421}{210},\frac{3969}{210}
Insert \frac{3969}{210} to the appropriate location in the new list.
\frac{75}{210},\frac{350}{210},\frac{1421}{210},\frac{3969}{210}
Insert \frac{350}{210} to the appropriate location in the new list.
-\frac{84}{210},\frac{75}{210},\frac{350}{210},\frac{1421}{210},\frac{3969}{210}
Insert -\frac{84}{210} to the appropriate location in the new list.
-\frac{2}{5},\frac{5}{14},\frac{5}{3},\frac{203}{30},\frac{189}{10}
Replace the obtained fractions with the initial values.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}