Solve for x, y
x = \frac{96}{5} = 19\frac{1}{5} = 19.2
y = \frac{244}{5} = 48\frac{4}{5} = 48.8
Graph
Share
Copied to clipboard
25x+0y=480
Consider the first equation. Multiply 0 and 5 to get 0.
25x+0=480
Anything times zero gives zero.
25x=480
Anything plus zero gives itself.
x=\frac{480}{25}
Divide both sides by 25.
x=\frac{96}{5}
Reduce the fraction \frac{480}{25} to lowest terms by extracting and canceling out 5.
\frac{96}{5}+y=68
Consider the second equation. Insert the known values of variables into the equation.
y=68-\frac{96}{5}
Subtract \frac{96}{5} from both sides.
y=\frac{244}{5}
Subtract \frac{96}{5} from 68 to get \frac{244}{5}.
x=\frac{96}{5} y=\frac{244}{5}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}