Solve for c, T
c=3000
T=3500
Share
Copied to clipboard
25c+22T=152000,11c+12T=75000
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
25c+22T=152000
Choose one of the equations and solve it for c by isolating c on the left hand side of the equal sign.
25c=-22T+152000
Subtract 22T from both sides of the equation.
c=\frac{1}{25}\left(-22T+152000\right)
Divide both sides by 25.
c=-\frac{22}{25}T+6080
Multiply \frac{1}{25} times -22T+152000.
11\left(-\frac{22}{25}T+6080\right)+12T=75000
Substitute -\frac{22T}{25}+6080 for c in the other equation, 11c+12T=75000.
-\frac{242}{25}T+66880+12T=75000
Multiply 11 times -\frac{22T}{25}+6080.
\frac{58}{25}T+66880=75000
Add -\frac{242T}{25} to 12T.
\frac{58}{25}T=8120
Subtract 66880 from both sides of the equation.
T=3500
Divide both sides of the equation by \frac{58}{25}, which is the same as multiplying both sides by the reciprocal of the fraction.
c=-\frac{22}{25}\times 3500+6080
Substitute 3500 for T in c=-\frac{22}{25}T+6080. Because the resulting equation contains only one variable, you can solve for c directly.
c=-3080+6080
Multiply -\frac{22}{25} times 3500.
c=3000
Add 6080 to -3080.
c=3000,T=3500
The system is now solved.
25c+22T=152000,11c+12T=75000
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}25&22\\11&12\end{matrix}\right)\left(\begin{matrix}c\\T\end{matrix}\right)=\left(\begin{matrix}152000\\75000\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}25&22\\11&12\end{matrix}\right))\left(\begin{matrix}25&22\\11&12\end{matrix}\right)\left(\begin{matrix}c\\T\end{matrix}\right)=inverse(\left(\begin{matrix}25&22\\11&12\end{matrix}\right))\left(\begin{matrix}152000\\75000\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}25&22\\11&12\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}c\\T\end{matrix}\right)=inverse(\left(\begin{matrix}25&22\\11&12\end{matrix}\right))\left(\begin{matrix}152000\\75000\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}c\\T\end{matrix}\right)=inverse(\left(\begin{matrix}25&22\\11&12\end{matrix}\right))\left(\begin{matrix}152000\\75000\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}c\\T\end{matrix}\right)=\left(\begin{matrix}\frac{12}{25\times 12-22\times 11}&-\frac{22}{25\times 12-22\times 11}\\-\frac{11}{25\times 12-22\times 11}&\frac{25}{25\times 12-22\times 11}\end{matrix}\right)\left(\begin{matrix}152000\\75000\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}c\\T\end{matrix}\right)=\left(\begin{matrix}\frac{6}{29}&-\frac{11}{29}\\-\frac{11}{58}&\frac{25}{58}\end{matrix}\right)\left(\begin{matrix}152000\\75000\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}c\\T\end{matrix}\right)=\left(\begin{matrix}\frac{6}{29}\times 152000-\frac{11}{29}\times 75000\\-\frac{11}{58}\times 152000+\frac{25}{58}\times 75000\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}c\\T\end{matrix}\right)=\left(\begin{matrix}3000\\3500\end{matrix}\right)
Do the arithmetic.
c=3000,T=3500
Extract the matrix elements c and T.
25c+22T=152000,11c+12T=75000
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
11\times 25c+11\times 22T=11\times 152000,25\times 11c+25\times 12T=25\times 75000
To make 25c and 11c equal, multiply all terms on each side of the first equation by 11 and all terms on each side of the second by 25.
275c+242T=1672000,275c+300T=1875000
Simplify.
275c-275c+242T-300T=1672000-1875000
Subtract 275c+300T=1875000 from 275c+242T=1672000 by subtracting like terms on each side of the equal sign.
242T-300T=1672000-1875000
Add 275c to -275c. Terms 275c and -275c cancel out, leaving an equation with only one variable that can be solved.
-58T=1672000-1875000
Add 242T to -300T.
-58T=-203000
Add 1672000 to -1875000.
T=3500
Divide both sides by -58.
11c+12\times 3500=75000
Substitute 3500 for T in 11c+12T=75000. Because the resulting equation contains only one variable, you can solve for c directly.
11c+42000=75000
Multiply 12 times 3500.
11c=33000
Subtract 42000 from both sides of the equation.
c=3000
Divide both sides by 11.
c=3000,T=3500
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}