Solve for x, y
x=2
y=-1
Graph
Share
Copied to clipboard
231x+269y=193,269x+231y=307
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
231x+269y=193
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
231x=-269y+193
Subtract 269y from both sides of the equation.
x=\frac{1}{231}\left(-269y+193\right)
Divide both sides by 231.
x=-\frac{269}{231}y+\frac{193}{231}
Multiply \frac{1}{231} times -269y+193.
269\left(-\frac{269}{231}y+\frac{193}{231}\right)+231y=307
Substitute \frac{-269y+193}{231} for x in the other equation, 269x+231y=307.
-\frac{72361}{231}y+\frac{51917}{231}+231y=307
Multiply 269 times \frac{-269y+193}{231}.
-\frac{19000}{231}y+\frac{51917}{231}=307
Add -\frac{72361y}{231} to 231y.
-\frac{19000}{231}y=\frac{19000}{231}
Subtract \frac{51917}{231} from both sides of the equation.
y=-1
Divide both sides of the equation by -\frac{19000}{231}, which is the same as multiplying both sides by the reciprocal of the fraction.
x=-\frac{269}{231}\left(-1\right)+\frac{193}{231}
Substitute -1 for y in x=-\frac{269}{231}y+\frac{193}{231}. Because the resulting equation contains only one variable, you can solve for x directly.
x=\frac{269+193}{231}
Multiply -\frac{269}{231} times -1.
x=2
Add \frac{193}{231} to \frac{269}{231} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=2,y=-1
The system is now solved.
231x+269y=193,269x+231y=307
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}231&269\\269&231\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}193\\307\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}231&269\\269&231\end{matrix}\right))\left(\begin{matrix}231&269\\269&231\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}231&269\\269&231\end{matrix}\right))\left(\begin{matrix}193\\307\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}231&269\\269&231\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}231&269\\269&231\end{matrix}\right))\left(\begin{matrix}193\\307\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}231&269\\269&231\end{matrix}\right))\left(\begin{matrix}193\\307\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{231}{231\times 231-269\times 269}&-\frac{269}{231\times 231-269\times 269}\\-\frac{269}{231\times 231-269\times 269}&\frac{231}{231\times 231-269\times 269}\end{matrix}\right)\left(\begin{matrix}193\\307\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{231}{19000}&\frac{269}{19000}\\\frac{269}{19000}&-\frac{231}{19000}\end{matrix}\right)\left(\begin{matrix}193\\307\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{231}{19000}\times 193+\frac{269}{19000}\times 307\\\frac{269}{19000}\times 193-\frac{231}{19000}\times 307\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\\-1\end{matrix}\right)
Do the arithmetic.
x=2,y=-1
Extract the matrix elements x and y.
231x+269y=193,269x+231y=307
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
269\times 231x+269\times 269y=269\times 193,231\times 269x+231\times 231y=231\times 307
To make 231x and 269x equal, multiply all terms on each side of the first equation by 269 and all terms on each side of the second by 231.
62139x+72361y=51917,62139x+53361y=70917
Simplify.
62139x-62139x+72361y-53361y=51917-70917
Subtract 62139x+53361y=70917 from 62139x+72361y=51917 by subtracting like terms on each side of the equal sign.
72361y-53361y=51917-70917
Add 62139x to -62139x. Terms 62139x and -62139x cancel out, leaving an equation with only one variable that can be solved.
19000y=51917-70917
Add 72361y to -53361y.
19000y=-19000
Add 51917 to -70917.
y=-1
Divide both sides by 19000.
269x+231\left(-1\right)=307
Substitute -1 for y in 269x+231y=307. Because the resulting equation contains only one variable, you can solve for x directly.
269x-231=307
Multiply 231 times -1.
269x=538
Add 231 to both sides of the equation.
x=2
Divide both sides by 269.
x=2,y=-1
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}