Solve for x, y
x = \frac{484}{71} = 6\frac{58}{71} \approx 6.816901408
y=\frac{58}{71}\approx 0.816901408
Graph
Share
Copied to clipboard
23x+119y=254,19x+123y=230
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
23x+119y=254
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
23x=-119y+254
Subtract 119y from both sides of the equation.
x=\frac{1}{23}\left(-119y+254\right)
Divide both sides by 23.
x=-\frac{119}{23}y+\frac{254}{23}
Multiply \frac{1}{23} times -119y+254.
19\left(-\frac{119}{23}y+\frac{254}{23}\right)+123y=230
Substitute \frac{-119y+254}{23} for x in the other equation, 19x+123y=230.
-\frac{2261}{23}y+\frac{4826}{23}+123y=230
Multiply 19 times \frac{-119y+254}{23}.
\frac{568}{23}y+\frac{4826}{23}=230
Add -\frac{2261y}{23} to 123y.
\frac{568}{23}y=\frac{464}{23}
Subtract \frac{4826}{23} from both sides of the equation.
y=\frac{58}{71}
Divide both sides of the equation by \frac{568}{23}, which is the same as multiplying both sides by the reciprocal of the fraction.
x=-\frac{119}{23}\times \frac{58}{71}+\frac{254}{23}
Substitute \frac{58}{71} for y in x=-\frac{119}{23}y+\frac{254}{23}. Because the resulting equation contains only one variable, you can solve for x directly.
x=-\frac{6902}{1633}+\frac{254}{23}
Multiply -\frac{119}{23} times \frac{58}{71} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
x=\frac{484}{71}
Add \frac{254}{23} to -\frac{6902}{1633} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=\frac{484}{71},y=\frac{58}{71}
The system is now solved.
23x+119y=254,19x+123y=230
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}23&119\\19&123\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}254\\230\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}23&119\\19&123\end{matrix}\right))\left(\begin{matrix}23&119\\19&123\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}23&119\\19&123\end{matrix}\right))\left(\begin{matrix}254\\230\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}23&119\\19&123\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}23&119\\19&123\end{matrix}\right))\left(\begin{matrix}254\\230\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}23&119\\19&123\end{matrix}\right))\left(\begin{matrix}254\\230\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{123}{23\times 123-119\times 19}&-\frac{119}{23\times 123-119\times 19}\\-\frac{19}{23\times 123-119\times 19}&\frac{23}{23\times 123-119\times 19}\end{matrix}\right)\left(\begin{matrix}254\\230\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{123}{568}&-\frac{119}{568}\\-\frac{19}{568}&\frac{23}{568}\end{matrix}\right)\left(\begin{matrix}254\\230\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{123}{568}\times 254-\frac{119}{568}\times 230\\-\frac{19}{568}\times 254+\frac{23}{568}\times 230\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{484}{71}\\\frac{58}{71}\end{matrix}\right)
Do the arithmetic.
x=\frac{484}{71},y=\frac{58}{71}
Extract the matrix elements x and y.
23x+119y=254,19x+123y=230
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
19\times 23x+19\times 119y=19\times 254,23\times 19x+23\times 123y=23\times 230
To make 23x and 19x equal, multiply all terms on each side of the first equation by 19 and all terms on each side of the second by 23.
437x+2261y=4826,437x+2829y=5290
Simplify.
437x-437x+2261y-2829y=4826-5290
Subtract 437x+2829y=5290 from 437x+2261y=4826 by subtracting like terms on each side of the equal sign.
2261y-2829y=4826-5290
Add 437x to -437x. Terms 437x and -437x cancel out, leaving an equation with only one variable that can be solved.
-568y=4826-5290
Add 2261y to -2829y.
-568y=-464
Add 4826 to -5290.
y=\frac{58}{71}
Divide both sides by -568.
19x+123\times \frac{58}{71}=230
Substitute \frac{58}{71} for y in 19x+123y=230. Because the resulting equation contains only one variable, you can solve for x directly.
19x+\frac{7134}{71}=230
Multiply 123 times \frac{58}{71}.
19x=\frac{9196}{71}
Subtract \frac{7134}{71} from both sides of the equation.
x=\frac{484}{71}
Divide both sides by 19.
x=\frac{484}{71},y=\frac{58}{71}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}