\left. \begin{array} { l } { 225 x ^ { 4 } + 25 m ^ { 2 } n ^ { 4 } - 150 x ^ { 2 } m ^ { 2 } } \\ { x ^ { 2 } + 2 x ( x - y ) + ( x - y ) ^ { 2 } } \end{array} \right.
Least Common Multiple
25\left(2x-y\right)^{2}\left(9x^{4}+m^{2}n^{4}-6\left(mx\right)^{2}\right)
Evaluate
25\left(9x^{4}+m^{2}n^{4}-6\left(mx\right)^{2}\right),\ \left(2x-y\right)^{2}
Share
Copied to clipboard
225x^{4}+25m^{2}n^{4}-150x^{2}m^{2}=25\left(9x^{4}-6m^{2}x^{2}+m^{2}n^{4}\right)
Factor the expressions that are not already factored.
25\left(2x-y\right)^{2}\left(9x^{4}-6m^{2}x^{2}+m^{2}n^{4}\right)
Identify all the factors and their highest power in all expressions. Multiply the highest powers of these factors to get the least common multiple.
900x^{6}-600m^{2}x^{4}-150m^{2}x^{2}y^{2}+100m^{2}x^{2}n^{4}-100xym^{2}n^{4}+225y^{2}x^{4}+25m^{2}y^{2}n^{4}-900yx^{5}+600ym^{2}x^{3}
Expand the expression.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}