Solve for h, j
h=3
j=-\frac{3}{5}+\frac{1}{12}i\approx -0.6+0.083333333i
Share
Copied to clipboard
22-2h-4-3\left(h-1\right)=h+3
Consider the first equation. Use the distributive property to multiply -2 by h+2.
18-2h-3\left(h-1\right)=h+3
Subtract 4 from 22 to get 18.
18-2h-3h+3=h+3
Use the distributive property to multiply -3 by h-1.
18-5h+3=h+3
Combine -2h and -3h to get -5h.
21-5h=h+3
Add 18 and 3 to get 21.
21-5h-h=3
Subtract h from both sides.
21-6h=3
Combine -5h and -h to get -6h.
-6h=3-21
Subtract 21 from both sides.
-6h=-18
Subtract 21 from 3 to get -18.
h=\frac{-18}{-6}
Divide both sides by -6.
h=3
Divide -18 by -6 to get 3.
4-5\left(3j-2\right)=\frac{92-5i}{4}
Consider the second equation. Divide both sides by 4.
4-5\left(3j-2\right)=23-\frac{5}{4}i
Divide 92-5i by 4 to get 23-\frac{5}{4}i.
4-15j+10=23-\frac{5}{4}i
Use the distributive property to multiply -5 by 3j-2.
14-15j=23-\frac{5}{4}i
Add 4 and 10 to get 14.
-15j=23-\frac{5}{4}i-14
Subtract 14 from both sides.
-15j=9-\frac{5}{4}i
Subtract 14 from 23-\frac{5}{4}i to get 9-\frac{5}{4}i.
j=\frac{9-\frac{5}{4}i}{-15}
Divide both sides by -15.
j=-\frac{3}{5}+\frac{1}{12}i
Divide 9-\frac{5}{4}i by -15 to get -\frac{3}{5}+\frac{1}{12}i.
h=3 j=-\frac{3}{5}+\frac{1}{12}i
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}