Solve for x, y
x = \frac{100}{23} = 4\frac{8}{23} \approx 4.347826087
y = \frac{213700}{23} = 9291\frac{7}{23} \approx 9291.304347826
Graph
Share
Copied to clipboard
\frac{77}{100}y+2137-y=0
Consider the second equation. Subtract y from both sides.
-\frac{23}{100}y+2137=0
Combine \frac{77}{100}y and -y to get -\frac{23}{100}y.
-\frac{23}{100}y=-2137
Subtract 2137 from both sides. Anything subtracted from zero gives its negation.
y=-2137\left(-\frac{100}{23}\right)
Multiply both sides by -\frac{100}{23}, the reciprocal of -\frac{23}{100}.
y=\frac{213700}{23}
Multiply -2137 and -\frac{100}{23} to get \frac{213700}{23}.
2137x=\frac{213700}{23}
Consider the first equation. Insert the known values of variables into the equation.
x=\frac{\frac{213700}{23}}{2137}
Divide both sides by 2137.
x=\frac{213700}{23\times 2137}
Express \frac{\frac{213700}{23}}{2137} as a single fraction.
x=\frac{213700}{49151}
Multiply 23 and 2137 to get 49151.
x=\frac{100}{23}
Reduce the fraction \frac{213700}{49151} to lowest terms by extracting and canceling out 2137.
x=\frac{100}{23} y=\frac{213700}{23}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}