Solve for x, t
x = \frac{11}{2} = 5\frac{1}{2} = 5.5
t=-3
Share
Copied to clipboard
21-3x+21=x+20
Consider the first equation. Use the distributive property to multiply -3 by x-7.
42-3x=x+20
Add 21 and 21 to get 42.
42-3x-x=20
Subtract x from both sides.
42-4x=20
Combine -3x and -x to get -4x.
-4x=20-42
Subtract 42 from both sides.
-4x=-22
Subtract 42 from 20 to get -22.
x=\frac{-22}{-4}
Divide both sides by -4.
x=\frac{11}{2}
Reduce the fraction \frac{-22}{-4} to lowest terms by extracting and canceling out -2.
3t-15-16t=12-2\left(t-3\right)
Consider the second equation. Use the distributive property to multiply 3 by t-5.
-13t-15=12-2\left(t-3\right)
Combine 3t and -16t to get -13t.
-13t-15=12-2t+6
Use the distributive property to multiply -2 by t-3.
-13t-15=18-2t
Add 12 and 6 to get 18.
-13t-15+2t=18
Add 2t to both sides.
-11t-15=18
Combine -13t and 2t to get -11t.
-11t=18+15
Add 15 to both sides.
-11t=33
Add 18 and 15 to get 33.
t=\frac{33}{-11}
Divide both sides by -11.
t=-3
Divide 33 by -11 to get -3.
x=\frac{11}{2} t=-3
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}