Solve for m, c
m = -\frac{61}{5} = -12\frac{1}{5} = -12.2
c=-105
Share
Copied to clipboard
20m=6-250
Consider the second equation. Subtract 250 from both sides.
20m=-244
Subtract 250 from 6 to get -244.
m=\frac{-244}{20}
Divide both sides by 20.
m=-\frac{61}{5}
Reduce the fraction \frac{-244}{20} to lowest terms by extracting and canceling out 4.
200+25\left(-\frac{61}{5}\right)=c
Consider the first equation. Insert the known values of variables into the equation.
200-305=c
Multiply 25 and -\frac{61}{5} to get -305.
-105=c
Subtract 305 from 200 to get -105.
c=-105
Swap sides so that all variable terms are on the left hand side.
m=-\frac{61}{5} c=-105
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}