Skip to main content
Solve for x, y
Tick mark Image
Graph

Similar Problems from Web Search

Share

20x+42y=1020,40x+19y=349
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
20x+42y=1020
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
20x=-42y+1020
Subtract 42y from both sides of the equation.
x=\frac{1}{20}\left(-42y+1020\right)
Divide both sides by 20.
x=-\frac{21}{10}y+51
Multiply \frac{1}{20} times -42y+1020.
40\left(-\frac{21}{10}y+51\right)+19y=349
Substitute -\frac{21y}{10}+51 for x in the other equation, 40x+19y=349.
-84y+2040+19y=349
Multiply 40 times -\frac{21y}{10}+51.
-65y+2040=349
Add -84y to 19y.
-65y=-1691
Subtract 2040 from both sides of the equation.
y=\frac{1691}{65}
Divide both sides by -65.
x=-\frac{21}{10}\times \frac{1691}{65}+51
Substitute \frac{1691}{65} for y in x=-\frac{21}{10}y+51. Because the resulting equation contains only one variable, you can solve for x directly.
x=-\frac{35511}{650}+51
Multiply -\frac{21}{10} times \frac{1691}{65} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
x=-\frac{2361}{650}
Add 51 to -\frac{35511}{650}.
x=-\frac{2361}{650},y=\frac{1691}{65}
The system is now solved.
20x+42y=1020,40x+19y=349
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}20&42\\40&19\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1020\\349\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}20&42\\40&19\end{matrix}\right))\left(\begin{matrix}20&42\\40&19\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}20&42\\40&19\end{matrix}\right))\left(\begin{matrix}1020\\349\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}20&42\\40&19\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}20&42\\40&19\end{matrix}\right))\left(\begin{matrix}1020\\349\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}20&42\\40&19\end{matrix}\right))\left(\begin{matrix}1020\\349\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{19}{20\times 19-42\times 40}&-\frac{42}{20\times 19-42\times 40}\\-\frac{40}{20\times 19-42\times 40}&\frac{20}{20\times 19-42\times 40}\end{matrix}\right)\left(\begin{matrix}1020\\349\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{19}{1300}&\frac{21}{650}\\\frac{2}{65}&-\frac{1}{65}\end{matrix}\right)\left(\begin{matrix}1020\\349\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{19}{1300}\times 1020+\frac{21}{650}\times 349\\\frac{2}{65}\times 1020-\frac{1}{65}\times 349\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2361}{650}\\\frac{1691}{65}\end{matrix}\right)
Do the arithmetic.
x=-\frac{2361}{650},y=\frac{1691}{65}
Extract the matrix elements x and y.
20x+42y=1020,40x+19y=349
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
40\times 20x+40\times 42y=40\times 1020,20\times 40x+20\times 19y=20\times 349
To make 20x and 40x equal, multiply all terms on each side of the first equation by 40 and all terms on each side of the second by 20.
800x+1680y=40800,800x+380y=6980
Simplify.
800x-800x+1680y-380y=40800-6980
Subtract 800x+380y=6980 from 800x+1680y=40800 by subtracting like terms on each side of the equal sign.
1680y-380y=40800-6980
Add 800x to -800x. Terms 800x and -800x cancel out, leaving an equation with only one variable that can be solved.
1300y=40800-6980
Add 1680y to -380y.
1300y=33820
Add 40800 to -6980.
y=\frac{1691}{65}
Divide both sides by 1300.
40x+19\times \frac{1691}{65}=349
Substitute \frac{1691}{65} for y in 40x+19y=349. Because the resulting equation contains only one variable, you can solve for x directly.
40x+\frac{32129}{65}=349
Multiply 19 times \frac{1691}{65}.
40x=-\frac{9444}{65}
Subtract \frac{32129}{65} from both sides of the equation.
x=-\frac{2361}{650}
Divide both sides by 40.
x=-\frac{2361}{650},y=\frac{1691}{65}
The system is now solved.