Solve for x, y
x=300
y=200
Graph
Share
Copied to clipboard
20x+30y=12000,25x+36y=14700
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
20x+30y=12000
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
20x=-30y+12000
Subtract 30y from both sides of the equation.
x=\frac{1}{20}\left(-30y+12000\right)
Divide both sides by 20.
x=-\frac{3}{2}y+600
Multiply \frac{1}{20} times -30y+12000.
25\left(-\frac{3}{2}y+600\right)+36y=14700
Substitute -\frac{3y}{2}+600 for x in the other equation, 25x+36y=14700.
-\frac{75}{2}y+15000+36y=14700
Multiply 25 times -\frac{3y}{2}+600.
-\frac{3}{2}y+15000=14700
Add -\frac{75y}{2} to 36y.
-\frac{3}{2}y=-300
Subtract 15000 from both sides of the equation.
y=200
Divide both sides of the equation by -\frac{3}{2}, which is the same as multiplying both sides by the reciprocal of the fraction.
x=-\frac{3}{2}\times 200+600
Substitute 200 for y in x=-\frac{3}{2}y+600. Because the resulting equation contains only one variable, you can solve for x directly.
x=-300+600
Multiply -\frac{3}{2} times 200.
x=300
Add 600 to -300.
x=300,y=200
The system is now solved.
20x+30y=12000,25x+36y=14700
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}20&30\\25&36\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}12000\\14700\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}20&30\\25&36\end{matrix}\right))\left(\begin{matrix}20&30\\25&36\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}20&30\\25&36\end{matrix}\right))\left(\begin{matrix}12000\\14700\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}20&30\\25&36\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}20&30\\25&36\end{matrix}\right))\left(\begin{matrix}12000\\14700\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}20&30\\25&36\end{matrix}\right))\left(\begin{matrix}12000\\14700\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{36}{20\times 36-30\times 25}&-\frac{30}{20\times 36-30\times 25}\\-\frac{25}{20\times 36-30\times 25}&\frac{20}{20\times 36-30\times 25}\end{matrix}\right)\left(\begin{matrix}12000\\14700\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{6}{5}&1\\\frac{5}{6}&-\frac{2}{3}\end{matrix}\right)\left(\begin{matrix}12000\\14700\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{6}{5}\times 12000+14700\\\frac{5}{6}\times 12000-\frac{2}{3}\times 14700\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}300\\200\end{matrix}\right)
Do the arithmetic.
x=300,y=200
Extract the matrix elements x and y.
20x+30y=12000,25x+36y=14700
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
25\times 20x+25\times 30y=25\times 12000,20\times 25x+20\times 36y=20\times 14700
To make 20x and 25x equal, multiply all terms on each side of the first equation by 25 and all terms on each side of the second by 20.
500x+750y=300000,500x+720y=294000
Simplify.
500x-500x+750y-720y=300000-294000
Subtract 500x+720y=294000 from 500x+750y=300000 by subtracting like terms on each side of the equal sign.
750y-720y=300000-294000
Add 500x to -500x. Terms 500x and -500x cancel out, leaving an equation with only one variable that can be solved.
30y=300000-294000
Add 750y to -720y.
30y=6000
Add 300000 to -294000.
y=200
Divide both sides by 30.
25x+36\times 200=14700
Substitute 200 for y in 25x+36y=14700. Because the resulting equation contains only one variable, you can solve for x directly.
25x+7200=14700
Multiply 36 times 200.
25x=7500
Subtract 7200 from both sides of the equation.
x=300
Divide both sides by 25.
x=300,y=200
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}