Solve for x, y
x=4560
y=-2700
Graph
Share
Copied to clipboard
20x+30y=10200,30x+40y=28800
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
20x+30y=10200
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
20x=-30y+10200
Subtract 30y from both sides of the equation.
x=\frac{1}{20}\left(-30y+10200\right)
Divide both sides by 20.
x=-\frac{3}{2}y+510
Multiply \frac{1}{20} times -30y+10200.
30\left(-\frac{3}{2}y+510\right)+40y=28800
Substitute -\frac{3y}{2}+510 for x in the other equation, 30x+40y=28800.
-45y+15300+40y=28800
Multiply 30 times -\frac{3y}{2}+510.
-5y+15300=28800
Add -45y to 40y.
-5y=13500
Subtract 15300 from both sides of the equation.
y=-2700
Divide both sides by -5.
x=-\frac{3}{2}\left(-2700\right)+510
Substitute -2700 for y in x=-\frac{3}{2}y+510. Because the resulting equation contains only one variable, you can solve for x directly.
x=4050+510
Multiply -\frac{3}{2} times -2700.
x=4560
Add 510 to 4050.
x=4560,y=-2700
The system is now solved.
20x+30y=10200,30x+40y=28800
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}20&30\\30&40\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}10200\\28800\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}20&30\\30&40\end{matrix}\right))\left(\begin{matrix}20&30\\30&40\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}20&30\\30&40\end{matrix}\right))\left(\begin{matrix}10200\\28800\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}20&30\\30&40\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}20&30\\30&40\end{matrix}\right))\left(\begin{matrix}10200\\28800\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}20&30\\30&40\end{matrix}\right))\left(\begin{matrix}10200\\28800\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{40}{20\times 40-30\times 30}&-\frac{30}{20\times 40-30\times 30}\\-\frac{30}{20\times 40-30\times 30}&\frac{20}{20\times 40-30\times 30}\end{matrix}\right)\left(\begin{matrix}10200\\28800\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{5}&\frac{3}{10}\\\frac{3}{10}&-\frac{1}{5}\end{matrix}\right)\left(\begin{matrix}10200\\28800\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{5}\times 10200+\frac{3}{10}\times 28800\\\frac{3}{10}\times 10200-\frac{1}{5}\times 28800\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}4560\\-2700\end{matrix}\right)
Do the arithmetic.
x=4560,y=-2700
Extract the matrix elements x and y.
20x+30y=10200,30x+40y=28800
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
30\times 20x+30\times 30y=30\times 10200,20\times 30x+20\times 40y=20\times 28800
To make 20x and 30x equal, multiply all terms on each side of the first equation by 30 and all terms on each side of the second by 20.
600x+900y=306000,600x+800y=576000
Simplify.
600x-600x+900y-800y=306000-576000
Subtract 600x+800y=576000 from 600x+900y=306000 by subtracting like terms on each side of the equal sign.
900y-800y=306000-576000
Add 600x to -600x. Terms 600x and -600x cancel out, leaving an equation with only one variable that can be solved.
100y=306000-576000
Add 900y to -800y.
100y=-270000
Add 306000 to -576000.
y=-2700
Divide both sides by 100.
30x+40\left(-2700\right)=28800
Substitute -2700 for y in 30x+40y=28800. Because the resulting equation contains only one variable, you can solve for x directly.
30x-108000=28800
Multiply 40 times -2700.
30x=136800
Add 108000 to both sides of the equation.
x=4560
Divide both sides by 30.
x=4560,y=-2700
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}