Solve for x, y
x=-\frac{1}{2}=-0.5
y=10
Graph
Share
Copied to clipboard
20x+3y=20,-20x+5y=60
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
20x+3y=20
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
20x=-3y+20
Subtract 3y from both sides of the equation.
x=\frac{1}{20}\left(-3y+20\right)
Divide both sides by 20.
x=-\frac{3}{20}y+1
Multiply \frac{1}{20} times -3y+20.
-20\left(-\frac{3}{20}y+1\right)+5y=60
Substitute -\frac{3y}{20}+1 for x in the other equation, -20x+5y=60.
3y-20+5y=60
Multiply -20 times -\frac{3y}{20}+1.
8y-20=60
Add 3y to 5y.
8y=80
Add 20 to both sides of the equation.
y=10
Divide both sides by 8.
x=-\frac{3}{20}\times 10+1
Substitute 10 for y in x=-\frac{3}{20}y+1. Because the resulting equation contains only one variable, you can solve for x directly.
x=-\frac{3}{2}+1
Multiply -\frac{3}{20} times 10.
x=-\frac{1}{2}
Add 1 to -\frac{3}{2}.
x=-\frac{1}{2},y=10
The system is now solved.
20x+3y=20,-20x+5y=60
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}20&3\\-20&5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}20\\60\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}20&3\\-20&5\end{matrix}\right))\left(\begin{matrix}20&3\\-20&5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}20&3\\-20&5\end{matrix}\right))\left(\begin{matrix}20\\60\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}20&3\\-20&5\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}20&3\\-20&5\end{matrix}\right))\left(\begin{matrix}20\\60\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}20&3\\-20&5\end{matrix}\right))\left(\begin{matrix}20\\60\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{20\times 5-3\left(-20\right)}&-\frac{3}{20\times 5-3\left(-20\right)}\\-\frac{-20}{20\times 5-3\left(-20\right)}&\frac{20}{20\times 5-3\left(-20\right)}\end{matrix}\right)\left(\begin{matrix}20\\60\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{32}&-\frac{3}{160}\\\frac{1}{8}&\frac{1}{8}\end{matrix}\right)\left(\begin{matrix}20\\60\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{32}\times 20-\frac{3}{160}\times 60\\\frac{1}{8}\times 20+\frac{1}{8}\times 60\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{2}\\10\end{matrix}\right)
Do the arithmetic.
x=-\frac{1}{2},y=10
Extract the matrix elements x and y.
20x+3y=20,-20x+5y=60
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
-20\times 20x-20\times 3y=-20\times 20,20\left(-20\right)x+20\times 5y=20\times 60
To make 20x and -20x equal, multiply all terms on each side of the first equation by -20 and all terms on each side of the second by 20.
-400x-60y=-400,-400x+100y=1200
Simplify.
-400x+400x-60y-100y=-400-1200
Subtract -400x+100y=1200 from -400x-60y=-400 by subtracting like terms on each side of the equal sign.
-60y-100y=-400-1200
Add -400x to 400x. Terms -400x and 400x cancel out, leaving an equation with only one variable that can be solved.
-160y=-400-1200
Add -60y to -100y.
-160y=-1600
Add -400 to -1200.
y=10
Divide both sides by -160.
-20x+5\times 10=60
Substitute 10 for y in -20x+5y=60. Because the resulting equation contains only one variable, you can solve for x directly.
-20x+50=60
Multiply 5 times 10.
-20x=10
Subtract 50 from both sides of the equation.
x=-\frac{1}{2}
Divide both sides by -20.
x=-\frac{1}{2},y=10
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}