Skip to main content
Solve for x, y, z
Tick mark Image

Similar Problems from Web Search

Share

x=-\frac{136}{27}y+151.2
Solve 2.7x+13.6y+0z=408.24 for x.
0.6\left(-\frac{136}{27}y+151.2\right)+13.6y+22.68z=362.88 0.07\left(-\frac{136}{27}y+151.2\right)+13.6y+22.68z=317.52
Substitute -\frac{136}{27}y+151.2 for x in the second and third equation.
y=\frac{2187}{85}-\frac{729}{340}z z=-\frac{8942}{15309}y+\frac{203}{15}
Solve these equations for y and z respectively.
z=-\frac{8942}{15309}\left(\frac{2187}{85}-\frac{729}{340}z\right)+\frac{203}{15}
Substitute \frac{2187}{85}-\frac{729}{340}z for y in the equation z=-\frac{8942}{15309}y+\frac{203}{15}.
z=\frac{314}{53}
Solve z=-\frac{8942}{15309}\left(\frac{2187}{85}-\frac{729}{340}z\right)+\frac{203}{15} for z.
y=\frac{2187}{85}-\frac{729}{340}\times \frac{314}{53}
Substitute \frac{314}{53} for z in the equation y=\frac{2187}{85}-\frac{729}{340}z.
y=\frac{117369}{9010}
Calculate y from y=\frac{2187}{85}-\frac{729}{340}\times \frac{314}{53}.
x=-\frac{136}{27}\times \frac{117369}{9010}+151.2
Substitute \frac{117369}{9010} for y in the equation x=-\frac{136}{27}y+151.2.
x=\frac{4536}{53}
Calculate x from x=-\frac{136}{27}\times \frac{117369}{9010}+151.2.
x=\frac{4536}{53} y=\frac{117369}{9010} z=\frac{314}{53}
The system is now solved.