\left. \begin{array} { l } { 2 z + 2 y + 2 x + y z + x z + x y } \\ { ( 1 + x ) ( 1 + y ) ( 1 + z ) } \end{array} \right.
Least Common Multiple
\left(x+1\right)\left(y+1\right)\left(z+1\right)\left(xy+xz+2x+yz+2y+2z\right)
Evaluate
xy+xz+2x+yz+2y+2z,\ \left(x+1\right)\left(y+1\right)\left(z+1\right)
Share
Copied to clipboard
\left(x+1\right)\left(y+1\right)\left(z+1\right)\left(xy+xz+2x+yz+2y+2z\right)
Identify all the factors and their highest power in all expressions. Multiply the highest powers of these factors to get the least common multiple.
x^{2}y^{2}+x^{2}z^{2}+2x^{2}+xy^{2}z^{2}+3xy^{2}+4xyz^{2}+9xyz+5xy+3xz^{2}+4xzy^{2}+5xz+2x+y^{2}z^{2}+2y^{2}+yx^{2}z^{2}+3yx^{2}+3yz^{2}+4yzx^{2}+5yz+2y+2z^{2}+zx^{2}y^{2}+3zx^{2}+3zy^{2}+2z
Expand the expression.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}