Solve for y, x
x=\frac{1}{3}\approx 0.333333333
y=\frac{1}{4}=0.25
Graph
Share
Copied to clipboard
2y=1-\frac{1}{2}
Consider the first equation. Subtract \frac{1}{2} from both sides.
2y=\frac{1}{2}
Subtract \frac{1}{2} from 1 to get \frac{1}{2}.
y=\frac{\frac{1}{2}}{2}
Divide both sides by 2.
y=\frac{1}{2\times 2}
Express \frac{\frac{1}{2}}{2} as a single fraction.
y=\frac{1}{4}
Multiply 2 and 2 to get 4.
2\times \frac{1}{4}+\frac{1}{2x}=2
Consider the second equation. Insert the known values of variables into the equation.
2\times \frac{1}{4}\times 4x+2=8x
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 4x, the least common multiple of 4,2x.
\frac{1}{2}\times 4x+2=8x
Multiply 2 and \frac{1}{4} to get \frac{1}{2}.
2x+2=8x
Multiply \frac{1}{2} and 4 to get 2.
2x+2-8x=0
Subtract 8x from both sides.
-6x+2=0
Combine 2x and -8x to get -6x.
-6x=-2
Subtract 2 from both sides. Anything subtracted from zero gives its negation.
x=\frac{-2}{-6}
Divide both sides by -6.
x=\frac{1}{3}
Reduce the fraction \frac{-2}{-6} to lowest terms by extracting and canceling out -2.
y=\frac{1}{4} x=\frac{1}{3}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}