Skip to main content
Solve for x_1, x_3, x_2
Tick mark Image

Similar Problems from Web Search

Share

x_{3}=2x_{1}-3
Solve 2x_{1}-x_{3}=3 for x_{3}.
x_{1}+2x_{2}-2\left(2x_{1}-3\right)=4 x_{2}+3\left(2x_{1}-3\right)=-1
Substitute 2x_{1}-3 for x_{3} in the second and third equation.
x_{1}=\frac{2}{3}+\frac{2}{3}x_{2} x_{2}=8-6x_{1}
Solve these equations for x_{1} and x_{2} respectively.
x_{2}=8-6\left(\frac{2}{3}+\frac{2}{3}x_{2}\right)
Substitute \frac{2}{3}+\frac{2}{3}x_{2} for x_{1} in the equation x_{2}=8-6x_{1}.
x_{2}=\frac{4}{5}
Solve x_{2}=8-6\left(\frac{2}{3}+\frac{2}{3}x_{2}\right) for x_{2}.
x_{1}=\frac{2}{3}+\frac{2}{3}\times \frac{4}{5}
Substitute \frac{4}{5} for x_{2} in the equation x_{1}=\frac{2}{3}+\frac{2}{3}x_{2}.
x_{1}=\frac{6}{5}
Calculate x_{1} from x_{1}=\frac{2}{3}+\frac{2}{3}\times \frac{4}{5}.
x_{3}=2\times \frac{6}{5}-3
Substitute \frac{6}{5} for x_{1} in the equation x_{3}=2x_{1}-3.
x_{3}=-\frac{3}{5}
Calculate x_{3} from x_{3}=2\times \frac{6}{5}-3.
x_{1}=\frac{6}{5} x_{3}=-\frac{3}{5} x_{2}=\frac{4}{5}
The system is now solved.