Solve for x_1, x_3, x_2
x_{1} = \frac{6}{5} = 1\frac{1}{5} = 1.2
x_{3}=-\frac{3}{5}=-0.6
x_{2}=\frac{4}{5}=0.8
Share
Copied to clipboard
x_{3}=2x_{1}-3
Solve 2x_{1}-x_{3}=3 for x_{3}.
x_{1}+2x_{2}-2\left(2x_{1}-3\right)=4 x_{2}+3\left(2x_{1}-3\right)=-1
Substitute 2x_{1}-3 for x_{3} in the second and third equation.
x_{1}=\frac{2}{3}+\frac{2}{3}x_{2} x_{2}=8-6x_{1}
Solve these equations for x_{1} and x_{2} respectively.
x_{2}=8-6\left(\frac{2}{3}+\frac{2}{3}x_{2}\right)
Substitute \frac{2}{3}+\frac{2}{3}x_{2} for x_{1} in the equation x_{2}=8-6x_{1}.
x_{2}=\frac{4}{5}
Solve x_{2}=8-6\left(\frac{2}{3}+\frac{2}{3}x_{2}\right) for x_{2}.
x_{1}=\frac{2}{3}+\frac{2}{3}\times \frac{4}{5}
Substitute \frac{4}{5} for x_{2} in the equation x_{1}=\frac{2}{3}+\frac{2}{3}x_{2}.
x_{1}=\frac{6}{5}
Calculate x_{1} from x_{1}=\frac{2}{3}+\frac{2}{3}\times \frac{4}{5}.
x_{3}=2\times \frac{6}{5}-3
Substitute \frac{6}{5} for x_{1} in the equation x_{3}=2x_{1}-3.
x_{3}=-\frac{3}{5}
Calculate x_{3} from x_{3}=2\times \frac{6}{5}-3.
x_{1}=\frac{6}{5} x_{3}=-\frac{3}{5} x_{2}=\frac{4}{5}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}