Skip to main content
Solve for x_1, x_2, x_3
Tick mark Image

Similar Problems from Web Search

Share

x_{2}=-2x_{1}+x_{3}
Solve 2x_{1}+x_{2}-x_{3}=0 for x_{2}.
x_{1}+2\left(-2x_{1}+x_{3}\right)-x_{3}=-1 x_{1}-2x_{1}+x_{3}+x_{3}=3
Substitute -2x_{1}+x_{3} for x_{2} in the second and third equation.
x_{1}=\frac{1}{3}+\frac{1}{3}x_{3} x_{3}=\frac{3}{2}+\frac{1}{2}x_{1}
Solve these equations for x_{1} and x_{3} respectively.
x_{3}=\frac{3}{2}+\frac{1}{2}\left(\frac{1}{3}+\frac{1}{3}x_{3}\right)
Substitute \frac{1}{3}+\frac{1}{3}x_{3} for x_{1} in the equation x_{3}=\frac{3}{2}+\frac{1}{2}x_{1}.
x_{3}=2
Solve x_{3}=\frac{3}{2}+\frac{1}{2}\left(\frac{1}{3}+\frac{1}{3}x_{3}\right) for x_{3}.
x_{1}=\frac{1}{3}+\frac{1}{3}\times 2
Substitute 2 for x_{3} in the equation x_{1}=\frac{1}{3}+\frac{1}{3}x_{3}.
x_{1}=1
Calculate x_{1} from x_{1}=\frac{1}{3}+\frac{1}{3}\times 2.
x_{2}=-2+2
Substitute 1 for x_{1} and 2 for x_{3} in the equation x_{2}=-2x_{1}+x_{3}.
x_{2}=0
Calculate x_{2} from x_{2}=-2+2.
x_{1}=1 x_{2}=0 x_{3}=2
The system is now solved.