Solve for x_1, x_2, x_3
x_{1}=1
x_{2}=0
x_{3}=2
Share
Copied to clipboard
x_{2}=-2x_{1}+x_{3}
Solve 2x_{1}+x_{2}-x_{3}=0 for x_{2}.
x_{1}+2\left(-2x_{1}+x_{3}\right)-x_{3}=-1 x_{1}-2x_{1}+x_{3}+x_{3}=3
Substitute -2x_{1}+x_{3} for x_{2} in the second and third equation.
x_{1}=\frac{1}{3}+\frac{1}{3}x_{3} x_{3}=\frac{3}{2}+\frac{1}{2}x_{1}
Solve these equations for x_{1} and x_{3} respectively.
x_{3}=\frac{3}{2}+\frac{1}{2}\left(\frac{1}{3}+\frac{1}{3}x_{3}\right)
Substitute \frac{1}{3}+\frac{1}{3}x_{3} for x_{1} in the equation x_{3}=\frac{3}{2}+\frac{1}{2}x_{1}.
x_{3}=2
Solve x_{3}=\frac{3}{2}+\frac{1}{2}\left(\frac{1}{3}+\frac{1}{3}x_{3}\right) for x_{3}.
x_{1}=\frac{1}{3}+\frac{1}{3}\times 2
Substitute 2 for x_{3} in the equation x_{1}=\frac{1}{3}+\frac{1}{3}x_{3}.
x_{1}=1
Calculate x_{1} from x_{1}=\frac{1}{3}+\frac{1}{3}\times 2.
x_{2}=-2+2
Substitute 1 for x_{1} and 2 for x_{3} in the equation x_{2}=-2x_{1}+x_{3}.
x_{2}=0
Calculate x_{2} from x_{2}=-2+2.
x_{1}=1 x_{2}=0 x_{3}=2
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}