Skip to main content
Solve for x_1, x_2, x_3
Tick mark Image

Similar Problems from Web Search

Share

x_{1}=-x_{2}+\frac{3}{2}x_{3}+2
Solve 2x_{1}+2x_{2}-3x_{3}=4 for x_{1}.
5\left(-x_{2}+\frac{3}{2}x_{3}+2\right)-7x_{2}+10x_{3}=11 3\left(-x_{2}+\frac{3}{2}x_{3}+2\right)-20x_{2}+3x_{3}=-7
Substitute -x_{2}+\frac{3}{2}x_{3}+2 for x_{1} in the second and third equation.
x_{2}=-\frac{1}{12}+\frac{35}{24}x_{3} x_{3}=-\frac{26}{15}+\frac{46}{15}x_{2}
Solve these equations for x_{2} and x_{3} respectively.
x_{3}=-\frac{26}{15}+\frac{46}{15}\left(-\frac{1}{12}+\frac{35}{24}x_{3}\right)
Substitute -\frac{1}{12}+\frac{35}{24}x_{3} for x_{2} in the equation x_{3}=-\frac{26}{15}+\frac{46}{15}x_{2}.
x_{3}=\frac{358}{625}
Solve x_{3}=-\frac{26}{15}+\frac{46}{15}\left(-\frac{1}{12}+\frac{35}{24}x_{3}\right) for x_{3}.
x_{2}=-\frac{1}{12}+\frac{35}{24}\times \frac{358}{625}
Substitute \frac{358}{625} for x_{3} in the equation x_{2}=-\frac{1}{12}+\frac{35}{24}x_{3}.
x_{2}=\frac{94}{125}
Calculate x_{2} from x_{2}=-\frac{1}{12}+\frac{35}{24}\times \frac{358}{625}.
x_{1}=-\frac{94}{125}+\frac{3}{2}\times \frac{358}{625}+2
Substitute \frac{94}{125} for x_{2} and \frac{358}{625} for x_{3} in the equation x_{1}=-x_{2}+\frac{3}{2}x_{3}+2.
x_{1}=\frac{1317}{625}
Calculate x_{1} from x_{1}=-\frac{94}{125}+\frac{3}{2}\times \frac{358}{625}+2.
x_{1}=\frac{1317}{625} x_{2}=\frac{94}{125} x_{3}=\frac{358}{625}
The system is now solved.