Solve for x, z, y
x=-33
y = \frac{39}{2} = 19\frac{1}{2} = 19.5
z=24
Share
Copied to clipboard
x+6y-5z=-36 3x+2y+3z=12 2x-7+4z=23
Reorder the equations.
x=-6y+5z-36
Solve x+6y-5z=-36 for x.
3\left(-6y+5z-36\right)+2y+3z=12 2\left(-6y+5z-36\right)-7+4z=23
Substitute -6y+5z-36 for x in the second and third equation.
z=\frac{20}{3}+\frac{8}{9}y y=-\frac{17}{2}+\frac{7}{6}z
Solve these equations for z and y respectively.
y=-\frac{17}{2}+\frac{7}{6}\left(\frac{20}{3}+\frac{8}{9}y\right)
Substitute \frac{20}{3}+\frac{8}{9}y for z in the equation y=-\frac{17}{2}+\frac{7}{6}z.
y=\frac{39}{2}
Solve y=-\frac{17}{2}+\frac{7}{6}\left(\frac{20}{3}+\frac{8}{9}y\right) for y.
z=\frac{20}{3}+\frac{8}{9}\times \frac{39}{2}
Substitute \frac{39}{2} for y in the equation z=\frac{20}{3}+\frac{8}{9}y.
z=24
Calculate z from z=\frac{20}{3}+\frac{8}{9}\times \frac{39}{2}.
x=-6\times \frac{39}{2}+5\times 24-36
Substitute 24 for z and \frac{39}{2} for y in the equation x=-6y+5z-36.
x=-33
Calculate x from x=-6\times \frac{39}{2}+5\times 24-36.
x=-33 z=24 y=\frac{39}{2}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}