Skip to main content
Solve for x, y, z
Tick mark Image

Similar Problems from Web Search

Share

x+y+z=3 -8x+10y+5z=7 2x-5y+4z=6
Reorder the equations.
x=-y-z+3
Solve x+y+z=3 for x.
-8\left(-y-z+3\right)+10y+5z=7 2\left(-y-z+3\right)-5y+4z=6
Substitute -y-z+3 for x in the second and third equation.
y=-\frac{13}{18}z+\frac{31}{18} z=\frac{7}{2}y
Solve these equations for y and z respectively.
z=\frac{7}{2}\left(-\frac{13}{18}z+\frac{31}{18}\right)
Substitute -\frac{13}{18}z+\frac{31}{18} for y in the equation z=\frac{7}{2}y.
z=\frac{217}{127}
Solve z=\frac{7}{2}\left(-\frac{13}{18}z+\frac{31}{18}\right) for z.
y=-\frac{13}{18}\times \frac{217}{127}+\frac{31}{18}
Substitute \frac{217}{127} for z in the equation y=-\frac{13}{18}z+\frac{31}{18}.
y=\frac{62}{127}
Calculate y from y=-\frac{13}{18}\times \frac{217}{127}+\frac{31}{18}.
x=-\frac{62}{127}-\frac{217}{127}+3
Substitute \frac{62}{127} for y and \frac{217}{127} for z in the equation x=-y-z+3.
x=\frac{102}{127}
Calculate x from x=-\frac{62}{127}-\frac{217}{127}+3.
x=\frac{102}{127} y=\frac{62}{127} z=\frac{217}{127}
The system is now solved.