Solve for x, y, z
x=\frac{102}{127}\approx 0.803149606
y=\frac{62}{127}\approx 0.488188976
z = \frac{217}{127} = 1\frac{90}{127} \approx 1.708661417
Share
Copied to clipboard
x+y+z=3 -8x+10y+5z=7 2x-5y+4z=6
Reorder the equations.
x=-y-z+3
Solve x+y+z=3 for x.
-8\left(-y-z+3\right)+10y+5z=7 2\left(-y-z+3\right)-5y+4z=6
Substitute -y-z+3 for x in the second and third equation.
y=-\frac{13}{18}z+\frac{31}{18} z=\frac{7}{2}y
Solve these equations for y and z respectively.
z=\frac{7}{2}\left(-\frac{13}{18}z+\frac{31}{18}\right)
Substitute -\frac{13}{18}z+\frac{31}{18} for y in the equation z=\frac{7}{2}y.
z=\frac{217}{127}
Solve z=\frac{7}{2}\left(-\frac{13}{18}z+\frac{31}{18}\right) for z.
y=-\frac{13}{18}\times \frac{217}{127}+\frac{31}{18}
Substitute \frac{217}{127} for z in the equation y=-\frac{13}{18}z+\frac{31}{18}.
y=\frac{62}{127}
Calculate y from y=-\frac{13}{18}\times \frac{217}{127}+\frac{31}{18}.
x=-\frac{62}{127}-\frac{217}{127}+3
Substitute \frac{62}{127} for y and \frac{217}{127} for z in the equation x=-y-z+3.
x=\frac{102}{127}
Calculate x from x=-\frac{62}{127}-\frac{217}{127}+3.
x=\frac{102}{127} y=\frac{62}{127} z=\frac{217}{127}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}