Skip to main content
Solve for x, y
Tick mark Image
Graph

Similar Problems from Web Search

Share

2x-3y=10
Consider the first equation. Add 10 to both sides. Anything plus zero gives itself.
2y+3x=-17
Consider the second equation. Add 3x to both sides.
2x-3y=10,3x+2y=-17
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
2x-3y=10
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
2x=3y+10
Add 3y to both sides of the equation.
x=\frac{1}{2}\left(3y+10\right)
Divide both sides by 2.
x=\frac{3}{2}y+5
Multiply \frac{1}{2} times 3y+10.
3\left(\frac{3}{2}y+5\right)+2y=-17
Substitute \frac{3y}{2}+5 for x in the other equation, 3x+2y=-17.
\frac{9}{2}y+15+2y=-17
Multiply 3 times \frac{3y}{2}+5.
\frac{13}{2}y+15=-17
Add \frac{9y}{2} to 2y.
\frac{13}{2}y=-32
Subtract 15 from both sides of the equation.
y=-\frac{64}{13}
Divide both sides of the equation by \frac{13}{2}, which is the same as multiplying both sides by the reciprocal of the fraction.
x=\frac{3}{2}\left(-\frac{64}{13}\right)+5
Substitute -\frac{64}{13} for y in x=\frac{3}{2}y+5. Because the resulting equation contains only one variable, you can solve for x directly.
x=-\frac{96}{13}+5
Multiply \frac{3}{2} times -\frac{64}{13} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
x=-\frac{31}{13}
Add 5 to -\frac{96}{13}.
x=-\frac{31}{13},y=-\frac{64}{13}
The system is now solved.
2x-3y=10
Consider the first equation. Add 10 to both sides. Anything plus zero gives itself.
2y+3x=-17
Consider the second equation. Add 3x to both sides.
2x-3y=10,3x+2y=-17
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}2&-3\\3&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}10\\-17\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}2&-3\\3&2\end{matrix}\right))\left(\begin{matrix}2&-3\\3&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-3\\3&2\end{matrix}\right))\left(\begin{matrix}10\\-17\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}2&-3\\3&2\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-3\\3&2\end{matrix}\right))\left(\begin{matrix}10\\-17\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-3\\3&2\end{matrix}\right))\left(\begin{matrix}10\\-17\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{2\times 2-\left(-3\times 3\right)}&-\frac{-3}{2\times 2-\left(-3\times 3\right)}\\-\frac{3}{2\times 2-\left(-3\times 3\right)}&\frac{2}{2\times 2-\left(-3\times 3\right)}\end{matrix}\right)\left(\begin{matrix}10\\-17\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{13}&\frac{3}{13}\\-\frac{3}{13}&\frac{2}{13}\end{matrix}\right)\left(\begin{matrix}10\\-17\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{13}\times 10+\frac{3}{13}\left(-17\right)\\-\frac{3}{13}\times 10+\frac{2}{13}\left(-17\right)\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{31}{13}\\-\frac{64}{13}\end{matrix}\right)
Do the arithmetic.
x=-\frac{31}{13},y=-\frac{64}{13}
Extract the matrix elements x and y.
2x-3y=10
Consider the first equation. Add 10 to both sides. Anything plus zero gives itself.
2y+3x=-17
Consider the second equation. Add 3x to both sides.
2x-3y=10,3x+2y=-17
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
3\times 2x+3\left(-3\right)y=3\times 10,2\times 3x+2\times 2y=2\left(-17\right)
To make 2x and 3x equal, multiply all terms on each side of the first equation by 3 and all terms on each side of the second by 2.
6x-9y=30,6x+4y=-34
Simplify.
6x-6x-9y-4y=30+34
Subtract 6x+4y=-34 from 6x-9y=30 by subtracting like terms on each side of the equal sign.
-9y-4y=30+34
Add 6x to -6x. Terms 6x and -6x cancel out, leaving an equation with only one variable that can be solved.
-13y=30+34
Add -9y to -4y.
-13y=64
Add 30 to 34.
y=-\frac{64}{13}
Divide both sides by -13.
3x+2\left(-\frac{64}{13}\right)=-17
Substitute -\frac{64}{13} for y in 3x+2y=-17. Because the resulting equation contains only one variable, you can solve for x directly.
3x-\frac{128}{13}=-17
Multiply 2 times -\frac{64}{13}.
3x=-\frac{93}{13}
Add \frac{128}{13} to both sides of the equation.
x=-\frac{31}{13}
Divide both sides by 3.
x=-\frac{31}{13},y=-\frac{64}{13}
The system is now solved.