Solve for x, y
x=\frac{39}{103}\approx 0.378640777
y = \frac{232}{103} = 2\frac{26}{103} \approx 2.252427184
Graph
Share
Copied to clipboard
2x-3y=-6,35x-y=11
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
2x-3y=-6
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
2x=3y-6
Add 3y to both sides of the equation.
x=\frac{1}{2}\left(3y-6\right)
Divide both sides by 2.
x=\frac{3}{2}y-3
Multiply \frac{1}{2} times -6+3y.
35\left(\frac{3}{2}y-3\right)-y=11
Substitute \frac{3y}{2}-3 for x in the other equation, 35x-y=11.
\frac{105}{2}y-105-y=11
Multiply 35 times \frac{3y}{2}-3.
\frac{103}{2}y-105=11
Add \frac{105y}{2} to -y.
\frac{103}{2}y=116
Add 105 to both sides of the equation.
y=\frac{232}{103}
Divide both sides of the equation by \frac{103}{2}, which is the same as multiplying both sides by the reciprocal of the fraction.
x=\frac{3}{2}\times \frac{232}{103}-3
Substitute \frac{232}{103} for y in x=\frac{3}{2}y-3. Because the resulting equation contains only one variable, you can solve for x directly.
x=\frac{348}{103}-3
Multiply \frac{3}{2} times \frac{232}{103} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
x=\frac{39}{103}
Add -3 to \frac{348}{103}.
x=\frac{39}{103},y=\frac{232}{103}
The system is now solved.
2x-3y=-6,35x-y=11
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}2&-3\\35&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-6\\11\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}2&-3\\35&-1\end{matrix}\right))\left(\begin{matrix}2&-3\\35&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-3\\35&-1\end{matrix}\right))\left(\begin{matrix}-6\\11\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}2&-3\\35&-1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-3\\35&-1\end{matrix}\right))\left(\begin{matrix}-6\\11\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-3\\35&-1\end{matrix}\right))\left(\begin{matrix}-6\\11\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{2\left(-1\right)-\left(-3\times 35\right)}&-\frac{-3}{2\left(-1\right)-\left(-3\times 35\right)}\\-\frac{35}{2\left(-1\right)-\left(-3\times 35\right)}&\frac{2}{2\left(-1\right)-\left(-3\times 35\right)}\end{matrix}\right)\left(\begin{matrix}-6\\11\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{103}&\frac{3}{103}\\-\frac{35}{103}&\frac{2}{103}\end{matrix}\right)\left(\begin{matrix}-6\\11\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{103}\left(-6\right)+\frac{3}{103}\times 11\\-\frac{35}{103}\left(-6\right)+\frac{2}{103}\times 11\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{39}{103}\\\frac{232}{103}\end{matrix}\right)
Do the arithmetic.
x=\frac{39}{103},y=\frac{232}{103}
Extract the matrix elements x and y.
2x-3y=-6,35x-y=11
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
35\times 2x+35\left(-3\right)y=35\left(-6\right),2\times 35x+2\left(-1\right)y=2\times 11
To make 2x and 35x equal, multiply all terms on each side of the first equation by 35 and all terms on each side of the second by 2.
70x-105y=-210,70x-2y=22
Simplify.
70x-70x-105y+2y=-210-22
Subtract 70x-2y=22 from 70x-105y=-210 by subtracting like terms on each side of the equal sign.
-105y+2y=-210-22
Add 70x to -70x. Terms 70x and -70x cancel out, leaving an equation with only one variable that can be solved.
-103y=-210-22
Add -105y to 2y.
-103y=-232
Add -210 to -22.
y=\frac{232}{103}
Divide both sides by -103.
35x-\frac{232}{103}=11
Substitute \frac{232}{103} for y in 35x-y=11. Because the resulting equation contains only one variable, you can solve for x directly.
35x=\frac{1365}{103}
Add \frac{232}{103} to both sides of the equation.
x=\frac{39}{103}
Divide both sides by 35.
x=\frac{39}{103},y=\frac{232}{103}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}