Solve for x, y, z
x = \frac{484}{105} = 4\frac{64}{105} \approx 4.60952381
y = -\frac{121}{105} = -1\frac{16}{105} \approx -1.152380952
z = \frac{1006}{105} = 9\frac{61}{105} \approx 9.580952381
Share
Copied to clipboard
x=\frac{3}{2}y-2z+\frac{51}{2}
Solve 2x-3y+4z=51 for x.
3\left(\frac{3}{2}y-2z+\frac{51}{2}\right)+4y-2\left(\frac{3}{2}y-2z+\frac{51}{2}\right)=0 -4\left(\frac{3}{2}y-2z+\frac{51}{2}\right)+2y+3z=8
Substitute \frac{3}{2}y-2z+\frac{51}{2} for x in the second and third equation.
y=-\frac{51}{11}+\frac{4}{11}z z=10+\frac{4}{11}y
Solve these equations for y and z respectively.
z=10+\frac{4}{11}\left(-\frac{51}{11}+\frac{4}{11}z\right)
Substitute -\frac{51}{11}+\frac{4}{11}z for y in the equation z=10+\frac{4}{11}y.
z=\frac{1006}{105}
Solve z=10+\frac{4}{11}\left(-\frac{51}{11}+\frac{4}{11}z\right) for z.
y=-\frac{51}{11}+\frac{4}{11}\times \frac{1006}{105}
Substitute \frac{1006}{105} for z in the equation y=-\frac{51}{11}+\frac{4}{11}z.
y=-\frac{121}{105}
Calculate y from y=-\frac{51}{11}+\frac{4}{11}\times \frac{1006}{105}.
x=\frac{3}{2}\left(-\frac{121}{105}\right)-2\times \frac{1006}{105}+\frac{51}{2}
Substitute -\frac{121}{105} for y and \frac{1006}{105} for z in the equation x=\frac{3}{2}y-2z+\frac{51}{2}.
x=\frac{484}{105}
Calculate x from x=\frac{3}{2}\left(-\frac{121}{105}\right)-2\times \frac{1006}{105}+\frac{51}{2}.
x=\frac{484}{105} y=-\frac{121}{105} z=\frac{1006}{105}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}