Skip to main content
Solve for x, y, z
Tick mark Image

Similar Problems from Web Search

Share

x=\frac{3}{2}y-2z+\frac{51}{2}
Solve 2x-3y+4z=51 for x.
3\left(\frac{3}{2}y-2z+\frac{51}{2}\right)+4y-2\left(\frac{3}{2}y-2z+\frac{51}{2}\right)=0 -4\left(\frac{3}{2}y-2z+\frac{51}{2}\right)+2y+3z=8
Substitute \frac{3}{2}y-2z+\frac{51}{2} for x in the second and third equation.
y=-\frac{51}{11}+\frac{4}{11}z z=10+\frac{4}{11}y
Solve these equations for y and z respectively.
z=10+\frac{4}{11}\left(-\frac{51}{11}+\frac{4}{11}z\right)
Substitute -\frac{51}{11}+\frac{4}{11}z for y in the equation z=10+\frac{4}{11}y.
z=\frac{1006}{105}
Solve z=10+\frac{4}{11}\left(-\frac{51}{11}+\frac{4}{11}z\right) for z.
y=-\frac{51}{11}+\frac{4}{11}\times \frac{1006}{105}
Substitute \frac{1006}{105} for z in the equation y=-\frac{51}{11}+\frac{4}{11}z.
y=-\frac{121}{105}
Calculate y from y=-\frac{51}{11}+\frac{4}{11}\times \frac{1006}{105}.
x=\frac{3}{2}\left(-\frac{121}{105}\right)-2\times \frac{1006}{105}+\frac{51}{2}
Substitute -\frac{121}{105} for y and \frac{1006}{105} for z in the equation x=\frac{3}{2}y-2z+\frac{51}{2}.
x=\frac{484}{105}
Calculate x from x=\frac{3}{2}\left(-\frac{121}{105}\right)-2\times \frac{1006}{105}+\frac{51}{2}.
x=\frac{484}{105} y=-\frac{121}{105} z=\frac{1006}{105}
The system is now solved.