Skip to main content
Solve for x, y
Tick mark Image
Graph

Similar Problems from Web Search

Share

2x-19y=-10,19x-18y=13
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
2x-19y=-10
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
2x=19y-10
Add 19y to both sides of the equation.
x=\frac{1}{2}\left(19y-10\right)
Divide both sides by 2.
x=\frac{19}{2}y-5
Multiply \frac{1}{2} times 19y-10.
19\left(\frac{19}{2}y-5\right)-18y=13
Substitute \frac{19y}{2}-5 for x in the other equation, 19x-18y=13.
\frac{361}{2}y-95-18y=13
Multiply 19 times \frac{19y}{2}-5.
\frac{325}{2}y-95=13
Add \frac{361y}{2} to -18y.
\frac{325}{2}y=108
Add 95 to both sides of the equation.
y=\frac{216}{325}
Divide both sides of the equation by \frac{325}{2}, which is the same as multiplying both sides by the reciprocal of the fraction.
x=\frac{19}{2}\times \frac{216}{325}-5
Substitute \frac{216}{325} for y in x=\frac{19}{2}y-5. Because the resulting equation contains only one variable, you can solve for x directly.
x=\frac{2052}{325}-5
Multiply \frac{19}{2} times \frac{216}{325} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
x=\frac{427}{325}
Add -5 to \frac{2052}{325}.
x=\frac{427}{325},y=\frac{216}{325}
The system is now solved.
2x-19y=-10,19x-18y=13
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}2&-19\\19&-18\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-10\\13\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}2&-19\\19&-18\end{matrix}\right))\left(\begin{matrix}2&-19\\19&-18\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-19\\19&-18\end{matrix}\right))\left(\begin{matrix}-10\\13\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}2&-19\\19&-18\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-19\\19&-18\end{matrix}\right))\left(\begin{matrix}-10\\13\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-19\\19&-18\end{matrix}\right))\left(\begin{matrix}-10\\13\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{18}{2\left(-18\right)-\left(-19\times 19\right)}&-\frac{-19}{2\left(-18\right)-\left(-19\times 19\right)}\\-\frac{19}{2\left(-18\right)-\left(-19\times 19\right)}&\frac{2}{2\left(-18\right)-\left(-19\times 19\right)}\end{matrix}\right)\left(\begin{matrix}-10\\13\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{18}{325}&\frac{19}{325}\\-\frac{19}{325}&\frac{2}{325}\end{matrix}\right)\left(\begin{matrix}-10\\13\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{18}{325}\left(-10\right)+\frac{19}{325}\times 13\\-\frac{19}{325}\left(-10\right)+\frac{2}{325}\times 13\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{427}{325}\\\frac{216}{325}\end{matrix}\right)
Do the arithmetic.
x=\frac{427}{325},y=\frac{216}{325}
Extract the matrix elements x and y.
2x-19y=-10,19x-18y=13
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
19\times 2x+19\left(-19\right)y=19\left(-10\right),2\times 19x+2\left(-18\right)y=2\times 13
To make 2x and 19x equal, multiply all terms on each side of the first equation by 19 and all terms on each side of the second by 2.
38x-361y=-190,38x-36y=26
Simplify.
38x-38x-361y+36y=-190-26
Subtract 38x-36y=26 from 38x-361y=-190 by subtracting like terms on each side of the equal sign.
-361y+36y=-190-26
Add 38x to -38x. Terms 38x and -38x cancel out, leaving an equation with only one variable that can be solved.
-325y=-190-26
Add -361y to 36y.
-325y=-216
Add -190 to -26.
y=\frac{216}{325}
Divide both sides by -325.
19x-18\times \frac{216}{325}=13
Substitute \frac{216}{325} for y in 19x-18y=13. Because the resulting equation contains only one variable, you can solve for x directly.
19x-\frac{3888}{325}=13
Multiply -18 times \frac{216}{325}.
19x=\frac{8113}{325}
Add \frac{3888}{325} to both sides of the equation.
x=\frac{427}{325}
Divide both sides by 19.
x=\frac{427}{325},y=\frac{216}{325}
The system is now solved.