Solve for x, y
x=-130
y=-380
Graph
Share
Copied to clipboard
2x-y=120,x-y=250
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
2x-y=120
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
2x=y+120
Add y to both sides of the equation.
x=\frac{1}{2}\left(y+120\right)
Divide both sides by 2.
x=\frac{1}{2}y+60
Multiply \frac{1}{2} times y+120.
\frac{1}{2}y+60-y=250
Substitute \frac{y}{2}+60 for x in the other equation, x-y=250.
-\frac{1}{2}y+60=250
Add \frac{y}{2} to -y.
-\frac{1}{2}y=190
Subtract 60 from both sides of the equation.
y=-380
Multiply both sides by -2.
x=\frac{1}{2}\left(-380\right)+60
Substitute -380 for y in x=\frac{1}{2}y+60. Because the resulting equation contains only one variable, you can solve for x directly.
x=-190+60
Multiply \frac{1}{2} times -380.
x=-130
Add 60 to -190.
x=-130,y=-380
The system is now solved.
2x-y=120,x-y=250
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}2&-1\\1&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}120\\250\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}2&-1\\1&-1\end{matrix}\right))\left(\begin{matrix}2&-1\\1&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-1\\1&-1\end{matrix}\right))\left(\begin{matrix}120\\250\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}2&-1\\1&-1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-1\\1&-1\end{matrix}\right))\left(\begin{matrix}120\\250\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-1\\1&-1\end{matrix}\right))\left(\begin{matrix}120\\250\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{2\left(-1\right)-\left(-1\right)}&-\frac{-1}{2\left(-1\right)-\left(-1\right)}\\-\frac{1}{2\left(-1\right)-\left(-1\right)}&\frac{2}{2\left(-1\right)-\left(-1\right)}\end{matrix}\right)\left(\begin{matrix}120\\250\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1&-1\\1&-2\end{matrix}\right)\left(\begin{matrix}120\\250\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}120-250\\120-2\times 250\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-130\\-380\end{matrix}\right)
Do the arithmetic.
x=-130,y=-380
Extract the matrix elements x and y.
2x-y=120,x-y=250
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
2x-x-y+y=120-250
Subtract x-y=250 from 2x-y=120 by subtracting like terms on each side of the equal sign.
2x-x=120-250
Add -y to y. Terms -y and y cancel out, leaving an equation with only one variable that can be solved.
x=120-250
Add 2x to -x.
x=-130
Add 120 to -250.
-130-y=250
Substitute -130 for x in x-y=250. Because the resulting equation contains only one variable, you can solve for y directly.
-y=380
Add 130 to both sides of the equation.
x=-130,y=-380
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}