Skip to main content
Solve for x, y
Tick mark Image
Graph

Similar Problems from Web Search

Share

x+y=18,-y^{2}+2x^{2}=9
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
x+y=18
Solve x+y=18 for x by isolating x on the left hand side of the equal sign.
x=-y+18
Subtract y from both sides of the equation.
-y^{2}+2\left(-y+18\right)^{2}=9
Substitute -y+18 for x in the other equation, -y^{2}+2x^{2}=9.
-y^{2}+2\left(y^{2}-36y+324\right)=9
Square -y+18.
-y^{2}+2y^{2}-72y+648=9
Multiply 2 times y^{2}-36y+324.
y^{2}-72y+648=9
Add -y^{2} to 2y^{2}.
y^{2}-72y+639=0
Subtract 9 from both sides of the equation.
y=\frac{-\left(-72\right)±\sqrt{\left(-72\right)^{2}-4\times 639}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1+2\left(-1\right)^{2} for a, 2\times 18\left(-1\right)\times 2 for b, and 639 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-\left(-72\right)±\sqrt{5184-4\times 639}}{2}
Square 2\times 18\left(-1\right)\times 2.
y=\frac{-\left(-72\right)±\sqrt{5184-2556}}{2}
Multiply -4 times 639.
y=\frac{-\left(-72\right)±\sqrt{2628}}{2}
Add 5184 to -2556.
y=\frac{-\left(-72\right)±6\sqrt{73}}{2}
Take the square root of 2628.
y=\frac{72±6\sqrt{73}}{2}
The opposite of 2\times 18\left(-1\right)\times 2 is 72.
y=\frac{6\sqrt{73}+72}{2}
Now solve the equation y=\frac{72±6\sqrt{73}}{2} when ± is plus. Add 72 to 6\sqrt{73}.
y=3\sqrt{73}+36
Divide 72+6\sqrt{73} by 2.
y=\frac{72-6\sqrt{73}}{2}
Now solve the equation y=\frac{72±6\sqrt{73}}{2} when ± is minus. Subtract 6\sqrt{73} from 72.
y=36-3\sqrt{73}
Divide 72-6\sqrt{73} by 2.
x=-\left(3\sqrt{73}+36\right)+18
There are two solutions for y: 36+3\sqrt{73} and 36-3\sqrt{73}. Substitute 36+3\sqrt{73} for y in the equation x=-y+18 to find the corresponding solution for x that satisfies both equations.
x=-\left(36-3\sqrt{73}\right)+18
Now substitute 36-3\sqrt{73} for y in the equation x=-y+18 and solve to find the corresponding solution for x that satisfies both equations.
x=-\left(3\sqrt{73}+36\right)+18,y=3\sqrt{73}+36\text{ or }x=-\left(36-3\sqrt{73}\right)+18,y=36-3\sqrt{73}
The system is now solved.