Solve for x, y
x=32
y=64
Graph
Share
Copied to clipboard
2x-y=0
Consider the first equation. Subtract y from both sides.
2x-12=116-y
Consider the second equation. Use the distributive property to multiply 2 by x-6.
2x-12+y=116
Add y to both sides.
2x+y=116+12
Add 12 to both sides.
2x+y=128
Add 116 and 12 to get 128.
2x-y=0,2x+y=128
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
2x-y=0
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
2x=y
Add y to both sides of the equation.
x=\frac{1}{2}y
Divide both sides by 2.
2\times \frac{1}{2}y+y=128
Substitute \frac{y}{2} for x in the other equation, 2x+y=128.
y+y=128
Multiply 2 times \frac{y}{2}.
2y=128
Add y to y.
y=64
Divide both sides by 2.
x=\frac{1}{2}\times 64
Substitute 64 for y in x=\frac{1}{2}y. Because the resulting equation contains only one variable, you can solve for x directly.
x=32
Multiply \frac{1}{2} times 64.
x=32,y=64
The system is now solved.
2x-y=0
Consider the first equation. Subtract y from both sides.
2x-12=116-y
Consider the second equation. Use the distributive property to multiply 2 by x-6.
2x-12+y=116
Add y to both sides.
2x+y=116+12
Add 12 to both sides.
2x+y=128
Add 116 and 12 to get 128.
2x-y=0,2x+y=128
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}2&-1\\2&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}0\\128\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}2&-1\\2&1\end{matrix}\right))\left(\begin{matrix}2&-1\\2&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-1\\2&1\end{matrix}\right))\left(\begin{matrix}0\\128\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}2&-1\\2&1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-1\\2&1\end{matrix}\right))\left(\begin{matrix}0\\128\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-1\\2&1\end{matrix}\right))\left(\begin{matrix}0\\128\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2-\left(-2\right)}&-\frac{-1}{2-\left(-2\right)}\\-\frac{2}{2-\left(-2\right)}&\frac{2}{2-\left(-2\right)}\end{matrix}\right)\left(\begin{matrix}0\\128\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{4}&\frac{1}{4}\\-\frac{1}{2}&\frac{1}{2}\end{matrix}\right)\left(\begin{matrix}0\\128\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{4}\times 128\\\frac{1}{2}\times 128\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}32\\64\end{matrix}\right)
Do the arithmetic.
x=32,y=64
Extract the matrix elements x and y.
2x-y=0
Consider the first equation. Subtract y from both sides.
2x-12=116-y
Consider the second equation. Use the distributive property to multiply 2 by x-6.
2x-12+y=116
Add y to both sides.
2x+y=116+12
Add 12 to both sides.
2x+y=128
Add 116 and 12 to get 128.
2x-y=0,2x+y=128
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
2x-2x-y-y=-128
Subtract 2x+y=128 from 2x-y=0 by subtracting like terms on each side of the equal sign.
-y-y=-128
Add 2x to -2x. Terms 2x and -2x cancel out, leaving an equation with only one variable that can be solved.
-2y=-128
Add -y to -y.
y=64
Divide both sides by -2.
2x+64=128
Substitute 64 for y in 2x+y=128. Because the resulting equation contains only one variable, you can solve for x directly.
2x=64
Subtract 64 from both sides of the equation.
x=32
Divide both sides by 2.
x=32,y=64
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}