Solve for x, y, z
x = \frac{137}{5} = 27\frac{2}{5} = 27.4
y = -\frac{182}{5} = -36\frac{2}{5} = -36.4
z = \frac{21}{5} = 4\frac{1}{5} = 4.2
Share
Copied to clipboard
y=10-2x+2z
Solve 2x+y-2z=10 for y.
3x+2\left(10-2x+2z\right)-2z=1 5x+4\left(10-2x+2z\right)+3z=4
Substitute 10-2x+2z for y in the second and third equation.
x=19+2z z=-\frac{36}{11}+\frac{3}{11}x
Solve these equations for x and z respectively.
z=-\frac{36}{11}+\frac{3}{11}\left(19+2z\right)
Substitute 19+2z for x in the equation z=-\frac{36}{11}+\frac{3}{11}x.
z=\frac{21}{5}
Solve z=-\frac{36}{11}+\frac{3}{11}\left(19+2z\right) for z.
x=19+2\times \frac{21}{5}
Substitute \frac{21}{5} for z in the equation x=19+2z.
x=\frac{137}{5}
Calculate x from x=19+2\times \frac{21}{5}.
y=10-2\times \frac{137}{5}+2\times \frac{21}{5}
Substitute \frac{137}{5} for x and \frac{21}{5} for z in the equation y=10-2x+2z.
y=-\frac{182}{5}
Calculate y from y=10-2\times \frac{137}{5}+2\times \frac{21}{5}.
x=\frac{137}{5} y=-\frac{182}{5} z=\frac{21}{5}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}