Solve for x, y, z
x=\frac{25}{32}=0.78125
y = \frac{23}{16} = 1\frac{7}{16} = 1.4375
z=\frac{13}{48}\approx 0.270833333
Share
Copied to clipboard
y=-2x+3
Solve 2x+y=3 for y.
3z+5\left(-2x+3\right)=8
Substitute -2x+3 for y in the equation 3z+5y=8.
x=-\frac{9}{2}z+2 z=\frac{10}{3}x-\frac{7}{3}
Solve the second equation for x and the third equation for z.
z=\frac{10}{3}\left(-\frac{9}{2}z+2\right)-\frac{7}{3}
Substitute -\frac{9}{2}z+2 for x in the equation z=\frac{10}{3}x-\frac{7}{3}.
z=\frac{13}{48}
Solve z=\frac{10}{3}\left(-\frac{9}{2}z+2\right)-\frac{7}{3} for z.
x=-\frac{9}{2}\times \frac{13}{48}+2
Substitute \frac{13}{48} for z in the equation x=-\frac{9}{2}z+2.
x=\frac{25}{32}
Calculate x from x=-\frac{9}{2}\times \frac{13}{48}+2.
y=-2\times \frac{25}{32}+3
Substitute \frac{25}{32} for x in the equation y=-2x+3.
y=\frac{23}{16}
Calculate y from y=-2\times \frac{25}{32}+3.
x=\frac{25}{32} y=\frac{23}{16} z=\frac{13}{48}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}