Solve for x, y
x=-26
y=160
Graph
Share
Copied to clipboard
2x+y=108,10x+2y=60
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
2x+y=108
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
2x=-y+108
Subtract y from both sides of the equation.
x=\frac{1}{2}\left(-y+108\right)
Divide both sides by 2.
x=-\frac{1}{2}y+54
Multiply \frac{1}{2} times -y+108.
10\left(-\frac{1}{2}y+54\right)+2y=60
Substitute -\frac{y}{2}+54 for x in the other equation, 10x+2y=60.
-5y+540+2y=60
Multiply 10 times -\frac{y}{2}+54.
-3y+540=60
Add -5y to 2y.
-3y=-480
Subtract 540 from both sides of the equation.
y=160
Divide both sides by -3.
x=-\frac{1}{2}\times 160+54
Substitute 160 for y in x=-\frac{1}{2}y+54. Because the resulting equation contains only one variable, you can solve for x directly.
x=-80+54
Multiply -\frac{1}{2} times 160.
x=-26
Add 54 to -80.
x=-26,y=160
The system is now solved.
2x+y=108,10x+2y=60
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}2&1\\10&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}108\\60\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}2&1\\10&2\end{matrix}\right))\left(\begin{matrix}2&1\\10&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&1\\10&2\end{matrix}\right))\left(\begin{matrix}108\\60\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}2&1\\10&2\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&1\\10&2\end{matrix}\right))\left(\begin{matrix}108\\60\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&1\\10&2\end{matrix}\right))\left(\begin{matrix}108\\60\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{2\times 2-10}&-\frac{1}{2\times 2-10}\\-\frac{10}{2\times 2-10}&\frac{2}{2\times 2-10}\end{matrix}\right)\left(\begin{matrix}108\\60\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{3}&\frac{1}{6}\\\frac{5}{3}&-\frac{1}{3}\end{matrix}\right)\left(\begin{matrix}108\\60\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{3}\times 108+\frac{1}{6}\times 60\\\frac{5}{3}\times 108-\frac{1}{3}\times 60\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-26\\160\end{matrix}\right)
Do the arithmetic.
x=-26,y=160
Extract the matrix elements x and y.
2x+y=108,10x+2y=60
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
10\times 2x+10y=10\times 108,2\times 10x+2\times 2y=2\times 60
To make 2x and 10x equal, multiply all terms on each side of the first equation by 10 and all terms on each side of the second by 2.
20x+10y=1080,20x+4y=120
Simplify.
20x-20x+10y-4y=1080-120
Subtract 20x+4y=120 from 20x+10y=1080 by subtracting like terms on each side of the equal sign.
10y-4y=1080-120
Add 20x to -20x. Terms 20x and -20x cancel out, leaving an equation with only one variable that can be solved.
6y=1080-120
Add 10y to -4y.
6y=960
Add 1080 to -120.
y=160
Divide both sides by 6.
10x+2\times 160=60
Substitute 160 for y in 10x+2y=60. Because the resulting equation contains only one variable, you can solve for x directly.
10x+320=60
Multiply 2 times 160.
10x=-260
Subtract 320 from both sides of the equation.
x=-26
Divide both sides by 10.
x=-26,y=160
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}