Solve for x, y, z
x=1
y=-4
z=8
Share
Copied to clipboard
x=-\frac{7}{2}y+3z-37
Solve 2x+7y-6z=-74 for x.
1\left(-\frac{7}{2}y+3z-37\right)+6y+4z=9 8\left(-\frac{7}{2}y+3z-37\right)+2y+3z=24
Substitute -\frac{7}{2}y+3z-37 for x in the second and third equation.
y=-\frac{14}{5}z+\frac{92}{5} z=\frac{320}{27}+\frac{26}{27}y
Solve these equations for y and z respectively.
z=\frac{320}{27}+\frac{26}{27}\left(-\frac{14}{5}z+\frac{92}{5}\right)
Substitute -\frac{14}{5}z+\frac{92}{5} for y in the equation z=\frac{320}{27}+\frac{26}{27}y.
z=8
Solve z=\frac{320}{27}+\frac{26}{27}\left(-\frac{14}{5}z+\frac{92}{5}\right) for z.
y=-\frac{14}{5}\times 8+\frac{92}{5}
Substitute 8 for z in the equation y=-\frac{14}{5}z+\frac{92}{5}.
y=-4
Calculate y from y=-\frac{14}{5}\times 8+\frac{92}{5}.
x=-\frac{7}{2}\left(-4\right)+3\times 8-37
Substitute -4 for y and 8 for z in the equation x=-\frac{7}{2}y+3z-37.
x=1
Calculate x from x=-\frac{7}{2}\left(-4\right)+3\times 8-37.
x=1 y=-4 z=8
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}