Solve for x, y
x = -\frac{13}{6} = -2\frac{1}{6} \approx -2.166666667
y = \frac{8}{3} = 2\frac{2}{3} \approx 2.666666667
Graph
Share
Copied to clipboard
3y=10-2
Consider the second equation. Subtract 2 from both sides.
3y=8
Subtract 2 from 10 to get 8.
y=\frac{8}{3}
Divide both sides by 3.
2x+5\times \frac{8}{3}=9
Consider the first equation. Insert the known values of variables into the equation.
2x+\frac{40}{3}=9
Multiply 5 and \frac{8}{3} to get \frac{40}{3}.
2x=9-\frac{40}{3}
Subtract \frac{40}{3} from both sides.
2x=-\frac{13}{3}
Subtract \frac{40}{3} from 9 to get -\frac{13}{3}.
x=\frac{-\frac{13}{3}}{2}
Divide both sides by 2.
x=\frac{-13}{3\times 2}
Express \frac{-\frac{13}{3}}{2} as a single fraction.
x=\frac{-13}{6}
Multiply 3 and 2 to get 6.
x=-\frac{13}{6}
Fraction \frac{-13}{6} can be rewritten as -\frac{13}{6} by extracting the negative sign.
x=-\frac{13}{6} y=\frac{8}{3}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}