Solve for x, y
x = \frac{7}{2} = 3\frac{1}{2} = 3.5
y = -\frac{7}{5} = -1\frac{2}{5} = -1.4
Graph
Share
Copied to clipboard
2x=7
Consider the second equation. Add 7 to both sides. Anything plus zero gives itself.
x=\frac{7}{2}
Divide both sides by 2.
2\times \frac{7}{2}+5y=0
Consider the first equation. Insert the known values of variables into the equation.
7+5y=0
Multiply 2 and \frac{7}{2} to get 7.
5y=-7
Subtract 7 from both sides. Anything subtracted from zero gives its negation.
y=-\frac{7}{5}
Divide both sides by 5.
x=\frac{7}{2} y=-\frac{7}{5}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}