Skip to main content
Solve for x, y (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

2x+4y=11
Solve 2x+4y=11 for x by isolating x on the left hand side of the equal sign.
2x=-4y+11
Subtract 4y from both sides of the equation.
x=-2y+\frac{11}{2}
Divide both sides by 2.
3y^{2}+17\left(-2y+\frac{11}{2}\right)^{2}=15
Substitute -2y+\frac{11}{2} for x in the other equation, 3y^{2}+17x^{2}=15.
3y^{2}+17\left(4y^{2}-22y+\frac{121}{4}\right)=15
Square -2y+\frac{11}{2}.
3y^{2}+68y^{2}-374y+\frac{2057}{4}=15
Multiply 17 times 4y^{2}-22y+\frac{121}{4}.
71y^{2}-374y+\frac{2057}{4}=15
Add 3y^{2} to 68y^{2}.
71y^{2}-374y+\frac{1997}{4}=0
Subtract 15 from both sides of the equation.
y=\frac{-\left(-374\right)±\sqrt{\left(-374\right)^{2}-4\times 71\times \frac{1997}{4}}}{2\times 71}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 3+17\left(-2\right)^{2} for a, 17\times \frac{11}{2}\left(-2\right)\times 2 for b, and \frac{1997}{4} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-\left(-374\right)±\sqrt{139876-4\times 71\times \frac{1997}{4}}}{2\times 71}
Square 17\times \frac{11}{2}\left(-2\right)\times 2.
y=\frac{-\left(-374\right)±\sqrt{139876-284\times \frac{1997}{4}}}{2\times 71}
Multiply -4 times 3+17\left(-2\right)^{2}.
y=\frac{-\left(-374\right)±\sqrt{139876-141787}}{2\times 71}
Multiply -284 times \frac{1997}{4}.
y=\frac{-\left(-374\right)±\sqrt{-1911}}{2\times 71}
Add 139876 to -141787.
y=\frac{-\left(-374\right)±7\sqrt{39}i}{2\times 71}
Take the square root of -1911.
y=\frac{374±7\sqrt{39}i}{2\times 71}
The opposite of 17\times \frac{11}{2}\left(-2\right)\times 2 is 374.
y=\frac{374±7\sqrt{39}i}{142}
Multiply 2 times 3+17\left(-2\right)^{2}.
y=\frac{374+7\sqrt{39}i}{142}
Now solve the equation y=\frac{374±7\sqrt{39}i}{142} when ± is plus. Add 374 to 7i\sqrt{39}.
y=\frac{7\sqrt{39}i}{142}+\frac{187}{71}
Divide 374+7i\sqrt{39} by 142.
y=\frac{-7\sqrt{39}i+374}{142}
Now solve the equation y=\frac{374±7\sqrt{39}i}{142} when ± is minus. Subtract 7i\sqrt{39} from 374.
y=-\frac{7\sqrt{39}i}{142}+\frac{187}{71}
Divide 374-7i\sqrt{39} by 142.
x=-2\left(\frac{7\sqrt{39}i}{142}+\frac{187}{71}\right)+\frac{11}{2}
There are two solutions for y: \frac{187}{71}+\frac{7i\sqrt{39}}{142} and \frac{187}{71}-\frac{7i\sqrt{39}}{142}. Substitute \frac{187}{71}+\frac{7i\sqrt{39}}{142} for y in the equation x=-2y+\frac{11}{2} to find the corresponding solution for x that satisfies both equations.
x=-2\left(-\frac{7\sqrt{39}i}{142}+\frac{187}{71}\right)+\frac{11}{2}
Now substitute \frac{187}{71}-\frac{7i\sqrt{39}}{142} for y in the equation x=-2y+\frac{11}{2} and solve to find the corresponding solution for x that satisfies both equations.
x=-2\left(\frac{7\sqrt{39}i}{142}+\frac{187}{71}\right)+\frac{11}{2},y=\frac{7\sqrt{39}i}{142}+\frac{187}{71}\text{ or }x=-2\left(-\frac{7\sqrt{39}i}{142}+\frac{187}{71}\right)+\frac{11}{2},y=-\frac{7\sqrt{39}i}{142}+\frac{187}{71}
The system is now solved.