Solve for x, z, q
x=1
z = -\frac{13}{7} = -1\frac{6}{7} \approx -1.857142857
q=2
Share
Copied to clipboard
12x+24\left(3-2x\right)=3\left(2x+2\right)+24
Consider the first equation. Multiply both sides of the equation by 6.
12x+72-48x=3\left(2x+2\right)+24
Use the distributive property to multiply 24 by 3-2x.
-36x+72=3\left(2x+2\right)+24
Combine 12x and -48x to get -36x.
-36x+72=6x+6+24
Use the distributive property to multiply 3 by 2x+2.
-36x+72=6x+30
Add 6 and 24 to get 30.
-36x+72-6x=30
Subtract 6x from both sides.
-42x+72=30
Combine -36x and -6x to get -42x.
-42x=30-72
Subtract 72 from both sides.
-42x=-42
Subtract 72 from 30 to get -42.
x=\frac{-42}{-42}
Divide both sides by -42.
x=1
Divide -42 by -42 to get 1.
4z+5+3z=-8
Consider the second equation. Add 3z to both sides.
7z+5=-8
Combine 4z and 3z to get 7z.
7z=-8-5
Subtract 5 from both sides.
7z=-13
Subtract 5 from -8 to get -13.
z=-\frac{13}{7}
Divide both sides by 7.
4-q=2\left(q-1\right)
Consider the third equation. Multiply both sides of the equation by 8, the least common multiple of 2,8,4.
4-q=2q-2
Use the distributive property to multiply 2 by q-1.
4-q-2q=-2
Subtract 2q from both sides.
4-3q=-2
Combine -q and -2q to get -3q.
-3q=-2-4
Subtract 4 from both sides.
-3q=-6
Subtract 4 from -2 to get -6.
q=\frac{-6}{-3}
Divide both sides by -3.
q=2
Divide -6 by -3 to get 2.
x=1 z=-\frac{13}{7} q=2
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}