Solve for x, y, z
x = -\frac{251}{78} = -3\frac{17}{78} \approx -3.217948718
y = \frac{49}{39} = 1\frac{10}{39} \approx 1.256410256
z = -\frac{13}{6} = -2\frac{1}{6} \approx -2.166666667
Share
Copied to clipboard
-3x+2y+z=10 2x+3y-4z=6 -x+5y+3z=3
Reorder the equations.
z=3x-2y+10
Solve -3x+2y+z=10 for z.
2x+3y-4\left(3x-2y+10\right)=6 -x+5y+3\left(3x-2y+10\right)=3
Substitute 3x-2y+10 for z in the second and third equation.
y=\frac{46}{11}+\frac{10}{11}x x=-\frac{27}{8}+\frac{1}{8}y
Solve these equations for y and x respectively.
x=-\frac{27}{8}+\frac{1}{8}\left(\frac{46}{11}+\frac{10}{11}x\right)
Substitute \frac{46}{11}+\frac{10}{11}x for y in the equation x=-\frac{27}{8}+\frac{1}{8}y.
x=-\frac{251}{78}
Solve x=-\frac{27}{8}+\frac{1}{8}\left(\frac{46}{11}+\frac{10}{11}x\right) for x.
y=\frac{46}{11}+\frac{10}{11}\left(-\frac{251}{78}\right)
Substitute -\frac{251}{78} for x in the equation y=\frac{46}{11}+\frac{10}{11}x.
y=\frac{49}{39}
Calculate y from y=\frac{46}{11}+\frac{10}{11}\left(-\frac{251}{78}\right).
z=3\left(-\frac{251}{78}\right)-2\times \frac{49}{39}+10
Substitute \frac{49}{39} for y and -\frac{251}{78} for x in the equation z=3x-2y+10.
z=-\frac{13}{6}
Calculate z from z=3\left(-\frac{251}{78}\right)-2\times \frac{49}{39}+10.
x=-\frac{251}{78} y=\frac{49}{39} z=-\frac{13}{6}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}