Skip to main content
Solve for x, y
Tick mark Image
Graph

Similar Problems from Web Search

Share

2x+3y=92,3x+4y=129
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
2x+3y=92
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
2x=-3y+92
Subtract 3y from both sides of the equation.
x=\frac{1}{2}\left(-3y+92\right)
Divide both sides by 2.
x=-\frac{3}{2}y+46
Multiply \frac{1}{2} times -3y+92.
3\left(-\frac{3}{2}y+46\right)+4y=129
Substitute -\frac{3y}{2}+46 for x in the other equation, 3x+4y=129.
-\frac{9}{2}y+138+4y=129
Multiply 3 times -\frac{3y}{2}+46.
-\frac{1}{2}y+138=129
Add -\frac{9y}{2} to 4y.
-\frac{1}{2}y=-9
Subtract 138 from both sides of the equation.
y=18
Multiply both sides by -2.
x=-\frac{3}{2}\times 18+46
Substitute 18 for y in x=-\frac{3}{2}y+46. Because the resulting equation contains only one variable, you can solve for x directly.
x=-27+46
Multiply -\frac{3}{2} times 18.
x=19
Add 46 to -27.
x=19,y=18
The system is now solved.
2x+3y=92,3x+4y=129
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}2&3\\3&4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}92\\129\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}2&3\\3&4\end{matrix}\right))\left(\begin{matrix}2&3\\3&4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\3&4\end{matrix}\right))\left(\begin{matrix}92\\129\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}2&3\\3&4\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\3&4\end{matrix}\right))\left(\begin{matrix}92\\129\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\3&4\end{matrix}\right))\left(\begin{matrix}92\\129\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{2\times 4-3\times 3}&-\frac{3}{2\times 4-3\times 3}\\-\frac{3}{2\times 4-3\times 3}&\frac{2}{2\times 4-3\times 3}\end{matrix}\right)\left(\begin{matrix}92\\129\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-4&3\\3&-2\end{matrix}\right)\left(\begin{matrix}92\\129\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-4\times 92+3\times 129\\3\times 92-2\times 129\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}19\\18\end{matrix}\right)
Do the arithmetic.
x=19,y=18
Extract the matrix elements x and y.
2x+3y=92,3x+4y=129
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
3\times 2x+3\times 3y=3\times 92,2\times 3x+2\times 4y=2\times 129
To make 2x and 3x equal, multiply all terms on each side of the first equation by 3 and all terms on each side of the second by 2.
6x+9y=276,6x+8y=258
Simplify.
6x-6x+9y-8y=276-258
Subtract 6x+8y=258 from 6x+9y=276 by subtracting like terms on each side of the equal sign.
9y-8y=276-258
Add 6x to -6x. Terms 6x and -6x cancel out, leaving an equation with only one variable that can be solved.
y=276-258
Add 9y to -8y.
y=18
Add 276 to -258.
3x+4\times 18=129
Substitute 18 for y in 3x+4y=129. Because the resulting equation contains only one variable, you can solve for x directly.
3x+72=129
Multiply 4 times 18.
3x=57
Subtract 72 from both sides of the equation.
x=19
Divide both sides by 3.
x=19,y=18
The system is now solved.