Skip to main content
Solve for x, y
Tick mark Image
Graph

Similar Problems from Web Search

Share

2x+3y=465,5x-7y=75
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
2x+3y=465
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
2x=-3y+465
Subtract 3y from both sides of the equation.
x=\frac{1}{2}\left(-3y+465\right)
Divide both sides by 2.
x=-\frac{3}{2}y+\frac{465}{2}
Multiply \frac{1}{2} times -3y+465.
5\left(-\frac{3}{2}y+\frac{465}{2}\right)-7y=75
Substitute \frac{-3y+465}{2} for x in the other equation, 5x-7y=75.
-\frac{15}{2}y+\frac{2325}{2}-7y=75
Multiply 5 times \frac{-3y+465}{2}.
-\frac{29}{2}y+\frac{2325}{2}=75
Add -\frac{15y}{2} to -7y.
-\frac{29}{2}y=-\frac{2175}{2}
Subtract \frac{2325}{2} from both sides of the equation.
y=75
Divide both sides of the equation by -\frac{29}{2}, which is the same as multiplying both sides by the reciprocal of the fraction.
x=-\frac{3}{2}\times 75+\frac{465}{2}
Substitute 75 for y in x=-\frac{3}{2}y+\frac{465}{2}. Because the resulting equation contains only one variable, you can solve for x directly.
x=\frac{-225+465}{2}
Multiply -\frac{3}{2} times 75.
x=120
Add \frac{465}{2} to -\frac{225}{2} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=120,y=75
The system is now solved.
2x+3y=465,5x-7y=75
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}2&3\\5&-7\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}465\\75\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}2&3\\5&-7\end{matrix}\right))\left(\begin{matrix}2&3\\5&-7\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\5&-7\end{matrix}\right))\left(\begin{matrix}465\\75\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}2&3\\5&-7\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\5&-7\end{matrix}\right))\left(\begin{matrix}465\\75\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\5&-7\end{matrix}\right))\left(\begin{matrix}465\\75\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{7}{2\left(-7\right)-3\times 5}&-\frac{3}{2\left(-7\right)-3\times 5}\\-\frac{5}{2\left(-7\right)-3\times 5}&\frac{2}{2\left(-7\right)-3\times 5}\end{matrix}\right)\left(\begin{matrix}465\\75\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{7}{29}&\frac{3}{29}\\\frac{5}{29}&-\frac{2}{29}\end{matrix}\right)\left(\begin{matrix}465\\75\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{7}{29}\times 465+\frac{3}{29}\times 75\\\frac{5}{29}\times 465-\frac{2}{29}\times 75\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}120\\75\end{matrix}\right)
Do the arithmetic.
x=120,y=75
Extract the matrix elements x and y.
2x+3y=465,5x-7y=75
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
5\times 2x+5\times 3y=5\times 465,2\times 5x+2\left(-7\right)y=2\times 75
To make 2x and 5x equal, multiply all terms on each side of the first equation by 5 and all terms on each side of the second by 2.
10x+15y=2325,10x-14y=150
Simplify.
10x-10x+15y+14y=2325-150
Subtract 10x-14y=150 from 10x+15y=2325 by subtracting like terms on each side of the equal sign.
15y+14y=2325-150
Add 10x to -10x. Terms 10x and -10x cancel out, leaving an equation with only one variable that can be solved.
29y=2325-150
Add 15y to 14y.
29y=2175
Add 2325 to -150.
y=75
Divide both sides by 29.
5x-7\times 75=75
Substitute 75 for y in 5x-7y=75. Because the resulting equation contains only one variable, you can solve for x directly.
5x-525=75
Multiply -7 times 75.
5x=600
Add 525 to both sides of the equation.
x=120
Divide both sides by 5.
x=120,y=75
The system is now solved.