Solve for x, y
x = \frac{29}{9} = 3\frac{2}{9} \approx 3.222222222
y = \frac{140}{27} = 5\frac{5}{27} \approx 5.185185185
Graph
Share
Copied to clipboard
9x=33-4
Consider the second equation. Subtract 4 from both sides.
9x=29
Subtract 4 from 33 to get 29.
x=\frac{29}{9}
Divide both sides by 9.
2\times \frac{29}{9}+3y=22
Consider the first equation. Insert the known values of variables into the equation.
\frac{58}{9}+3y=22
Multiply 2 and \frac{29}{9} to get \frac{58}{9}.
3y=22-\frac{58}{9}
Subtract \frac{58}{9} from both sides.
3y=\frac{140}{9}
Subtract \frac{58}{9} from 22 to get \frac{140}{9}.
y=\frac{\frac{140}{9}}{3}
Divide both sides by 3.
y=\frac{140}{9\times 3}
Express \frac{\frac{140}{9}}{3} as a single fraction.
y=\frac{140}{27}
Multiply 9 and 3 to get 27.
x=\frac{29}{9} y=\frac{140}{27}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}