Solve for x, y
x = \frac{27}{8} = 3\frac{3}{8} = 3.375
y = \frac{15}{4} = 3\frac{3}{4} = 3.75
Graph
Share
Copied to clipboard
-8x=-27
Consider the second equation. Combine -5x and -3x to get -8x.
x=\frac{-27}{-8}
Divide both sides by -8.
x=\frac{27}{8}
Fraction \frac{-27}{-8} can be simplified to \frac{27}{8} by removing the negative sign from both the numerator and the denominator.
2\times \frac{27}{8}+3y=18
Consider the first equation. Insert the known values of variables into the equation.
\frac{27}{4}+3y=18
Multiply 2 and \frac{27}{8} to get \frac{27}{4}.
3y=18-\frac{27}{4}
Subtract \frac{27}{4} from both sides.
3y=\frac{45}{4}
Subtract \frac{27}{4} from 18 to get \frac{45}{4}.
y=\frac{\frac{45}{4}}{3}
Divide both sides by 3.
y=\frac{45}{4\times 3}
Express \frac{\frac{45}{4}}{3} as a single fraction.
y=\frac{45}{12}
Multiply 4 and 3 to get 12.
y=\frac{15}{4}
Reduce the fraction \frac{45}{12} to lowest terms by extracting and canceling out 3.
x=\frac{27}{8} y=\frac{15}{4}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}