Solve for x, y
x=56
y=16
Graph
Share
Copied to clipboard
2x+3y=160,3x+4y=232
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
2x+3y=160
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
2x=-3y+160
Subtract 3y from both sides of the equation.
x=\frac{1}{2}\left(-3y+160\right)
Divide both sides by 2.
x=-\frac{3}{2}y+80
Multiply \frac{1}{2} times -3y+160.
3\left(-\frac{3}{2}y+80\right)+4y=232
Substitute -\frac{3y}{2}+80 for x in the other equation, 3x+4y=232.
-\frac{9}{2}y+240+4y=232
Multiply 3 times -\frac{3y}{2}+80.
-\frac{1}{2}y+240=232
Add -\frac{9y}{2} to 4y.
-\frac{1}{2}y=-8
Subtract 240 from both sides of the equation.
y=16
Multiply both sides by -2.
x=-\frac{3}{2}\times 16+80
Substitute 16 for y in x=-\frac{3}{2}y+80. Because the resulting equation contains only one variable, you can solve for x directly.
x=-24+80
Multiply -\frac{3}{2} times 16.
x=56
Add 80 to -24.
x=56,y=16
The system is now solved.
2x+3y=160,3x+4y=232
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}2&3\\3&4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}160\\232\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}2&3\\3&4\end{matrix}\right))\left(\begin{matrix}2&3\\3&4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\3&4\end{matrix}\right))\left(\begin{matrix}160\\232\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}2&3\\3&4\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\3&4\end{matrix}\right))\left(\begin{matrix}160\\232\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\3&4\end{matrix}\right))\left(\begin{matrix}160\\232\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{2\times 4-3\times 3}&-\frac{3}{2\times 4-3\times 3}\\-\frac{3}{2\times 4-3\times 3}&\frac{2}{2\times 4-3\times 3}\end{matrix}\right)\left(\begin{matrix}160\\232\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-4&3\\3&-2\end{matrix}\right)\left(\begin{matrix}160\\232\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-4\times 160+3\times 232\\3\times 160-2\times 232\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}56\\16\end{matrix}\right)
Do the arithmetic.
x=56,y=16
Extract the matrix elements x and y.
2x+3y=160,3x+4y=232
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
3\times 2x+3\times 3y=3\times 160,2\times 3x+2\times 4y=2\times 232
To make 2x and 3x equal, multiply all terms on each side of the first equation by 3 and all terms on each side of the second by 2.
6x+9y=480,6x+8y=464
Simplify.
6x-6x+9y-8y=480-464
Subtract 6x+8y=464 from 6x+9y=480 by subtracting like terms on each side of the equal sign.
9y-8y=480-464
Add 6x to -6x. Terms 6x and -6x cancel out, leaving an equation with only one variable that can be solved.
y=480-464
Add 9y to -8y.
y=16
Add 480 to -464.
3x+4\times 16=232
Substitute 16 for y in 3x+4y=232. Because the resulting equation contains only one variable, you can solve for x directly.
3x+64=232
Multiply 4 times 16.
3x=168
Subtract 64 from both sides of the equation.
x=56
Divide both sides by 3.
x=56,y=16
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}