Solve for x, y
x=412
y=232
Graph
Share
Copied to clipboard
2x+3y=1520,3x+2y=1700
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
2x+3y=1520
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
2x=-3y+1520
Subtract 3y from both sides of the equation.
x=\frac{1}{2}\left(-3y+1520\right)
Divide both sides by 2.
x=-\frac{3}{2}y+760
Multiply \frac{1}{2} times -3y+1520.
3\left(-\frac{3}{2}y+760\right)+2y=1700
Substitute -\frac{3y}{2}+760 for x in the other equation, 3x+2y=1700.
-\frac{9}{2}y+2280+2y=1700
Multiply 3 times -\frac{3y}{2}+760.
-\frac{5}{2}y+2280=1700
Add -\frac{9y}{2} to 2y.
-\frac{5}{2}y=-580
Subtract 2280 from both sides of the equation.
y=232
Divide both sides of the equation by -\frac{5}{2}, which is the same as multiplying both sides by the reciprocal of the fraction.
x=-\frac{3}{2}\times 232+760
Substitute 232 for y in x=-\frac{3}{2}y+760. Because the resulting equation contains only one variable, you can solve for x directly.
x=-348+760
Multiply -\frac{3}{2} times 232.
x=412
Add 760 to -348.
x=412,y=232
The system is now solved.
2x+3y=1520,3x+2y=1700
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}2&3\\3&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1520\\1700\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}2&3\\3&2\end{matrix}\right))\left(\begin{matrix}2&3\\3&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\3&2\end{matrix}\right))\left(\begin{matrix}1520\\1700\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}2&3\\3&2\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\3&2\end{matrix}\right))\left(\begin{matrix}1520\\1700\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\3&2\end{matrix}\right))\left(\begin{matrix}1520\\1700\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{2\times 2-3\times 3}&-\frac{3}{2\times 2-3\times 3}\\-\frac{3}{2\times 2-3\times 3}&\frac{2}{2\times 2-3\times 3}\end{matrix}\right)\left(\begin{matrix}1520\\1700\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{5}&\frac{3}{5}\\\frac{3}{5}&-\frac{2}{5}\end{matrix}\right)\left(\begin{matrix}1520\\1700\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{5}\times 1520+\frac{3}{5}\times 1700\\\frac{3}{5}\times 1520-\frac{2}{5}\times 1700\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}412\\232\end{matrix}\right)
Do the arithmetic.
x=412,y=232
Extract the matrix elements x and y.
2x+3y=1520,3x+2y=1700
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
3\times 2x+3\times 3y=3\times 1520,2\times 3x+2\times 2y=2\times 1700
To make 2x and 3x equal, multiply all terms on each side of the first equation by 3 and all terms on each side of the second by 2.
6x+9y=4560,6x+4y=3400
Simplify.
6x-6x+9y-4y=4560-3400
Subtract 6x+4y=3400 from 6x+9y=4560 by subtracting like terms on each side of the equal sign.
9y-4y=4560-3400
Add 6x to -6x. Terms 6x and -6x cancel out, leaving an equation with only one variable that can be solved.
5y=4560-3400
Add 9y to -4y.
5y=1160
Add 4560 to -3400.
y=232
Divide both sides by 5.
3x+2\times 232=1700
Substitute 232 for y in 3x+2y=1700. Because the resulting equation contains only one variable, you can solve for x directly.
3x+464=1700
Multiply 2 times 232.
3x=1236
Subtract 464 from both sides of the equation.
x=412
Divide both sides by 3.
x=412,y=232
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}